IOWA State University

Digital Repository

Magnetic fields associated with sixty hertz power systems

Alan Jack Mitchell
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Mitchell, Alan Jack, "Magnetic fields associated with sixty hertz power systems" (1990). Retrospective Theses and Dissertations. 17279. https://lib.dr.iastate.edu/rtd/17279

Magnetic fields associated with
sixty hertz power systems
by

Alan Jack Mitchell

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering Major: Electrical Engineering

Approved:

Signatures redacted for privacy.

Iowa State University
Ames, Iowa
1990

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 General Background 1
1.2 Historical Background 6
1.3 Nancy Wertheimer and the Denver Study 6
1.4 Media Coverage 9
1.5 Research at Iowa State University 10
2. LITERATURE REVIEW 11
2.1 Introduction 11
2.2 General 11
2.3 Medical 12
2.4 Epidemiologic 13
2.5 Engineering 14
3. MEASUREMENT DEVICE 16
3.1 Introduction 16
3.2 EMDEX 16
3.3 EMDEXC 33
3.4 Measuring Wheel 39
4. MEASUREMENT ACTIVITIES 42
4.1 Introduction 42
4.2 City of Ames 42
4.3 Pad-Mount Transformer 51
4.4 Plaza Condominiums 91
4.5 College of Veterinary Medicine 96
4.6 Background Magnetic Field Measurements 98
4.7 Measurements Around Electrical Appliances 110
5. COMPUTER PROGRAMS 114
5.1 Introduction 114
5.2 EPRI TLWorkstation 114
5.3 EPRI EXPOCALC 122
5.4 Commonwealth Edison Program 124
5.5 Minimization Program 132
6. CONCLUSIONS 153
6.1 Introduction 153
6.2 Summary of Work Completed 153
6.3 Suggestions for Future Work 155
7. APPENDIX A 156
8. APPENDIX B 157
9. APPENDIX C 158
10. LITERATURE CITED 174
11. ACKNOWLEDGMENTS 179

LIST OF TABLES

Page
Table 1.1 State regulations limiting field strengths on transmission line right of ways 5
Table 3.1 Specification for original EMDEX 17
Table 3.2 Distance criteria for wire code categories in feet 33Table 4.1Table 5.1Table 5.2Table 5.3Table 5.4Table 5.5
Table 5.6Table 5.7Table 5.8Table 5.9Table 5.10Table 5.11Table 5.12Table 5.13Table 5.14
Table 5.15
Table 5.16
Magnetic field data for home electrical devices 112
TLWorkstation input data for flat 345 kV structure 116
Electric field output for 345 kV flat structure 117
Magnetic field output for 345 kV flat structure 118
EXPOCALC example electric field output 125
EXPOCALC example electric field exposure summary 126
EXPOCALC example magnetic field output 127
EXPOCALC example magnetic field exposure summary 128
69 kV line with 32 feet to bottom conductor 133
69 kV line with 34 feet to bottom conductor 134
69 kV line with 36 feet to bottom conductor 135
69 kV line with 38 feet to bottom conductor 136
69 kV line with 40 feet to bottom conductor 137
69 kV line with 42 feet to bottom conductor 138
Minimization output for 34.5 kV three
phase line 144
Minimization output for double threephase line, 161 kV and 69 kV144
Minimization output for double 161 kV three phase line 147

LIST OF FIGURES

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
FIgure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Page
The electric power system 3
EPRI EMDEX unit 17
Phase I EMDEX project data 20
Phase I EMDEX project data 21
Phase I EMDEX project data 22
Phase I EMDEX project data 23
Phase I EMDEX project data 24
Phase I EMDEX project data 25
Phase I EMDEX project data 26
Phase I EMDEX project data 27
Phase I EMDEX project data 28
Phase I EMDEX project data 29
Phase I EMDEX project data 30
Phase I EMDEX project data 31
Phase II EMDEX project data 34
Phase II EMDEX project data 35
Phase II EMDEX project data 36
The EMDEXC 37
City of Ames distribution line data 44
City of Ames distribution line data 45
City of Ames distribution line data 46
City of Ames distribution line data 47
City of Ames distribution line data 48
City of Ames distribution line data 49
Map of the City of Ames 50
Lot at 1010 Curtis 52
Magnetic field measurement \#3 53
Magnetic field measurement \#4 54
Magnetic field measurement \#5 55
Magnetic field measurement \#6 56
Magnetic field measurement \#7 57
Magnetic field measurement \#8 58
Magnetic field measurement \#9 59
Lot at 1106 Curtis 60
Magnetic field measurement \#10 61
Magnetic field measurement \#11 62
Magnetic field measurement \#12 63
Lot at 1518 Carroll 64
Magnetic field measurement \#14 65
Magnetic field measurement \#16 66
Magnetic field measurement \#17 67
Magnetic field measurement \#18 68
Magnetic field measurement \#19 69
Lot at 120 O'neil 70
Magnetic field measurement \#20 71
Magnetic field measurement \#21 72
Figure 4.29Figure 4.30Figure 4.31Figure 4.32Figure 4.33Figure 4.34Figure 4.35Figure 4.36Figure 4.37
Figure 4.38
Figure 4.39
Figure 4.40
Figure 4.41
Figure 4.42
Figure 4.43
Figure 4.44Figure 4.45Figure 4.46Figure 4.47Figure 4.48Figure 4.49
Figure 4.50
Figure 4.51
Figure 4.52
Figure 4.53
Figure 4.54
Figure 4.55
Figure 4.56
Figure 4.57
Figure 4.58
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Magnetic field measurement \#22 73
Magnetic field measurement \#23 74
Lot at 1618 Top-O-Hollow 75
Magnetic field measurement \#24 76
Magnetic field measurement \#25 77
Magnetic field measurement \#26 78
Lot at 2226 Donald Street 79
Magnetic field measurement \#27 80
Magnetic field measurement \#28 81
Magnetic field measurement \#29 82
Magnetic field measurement \#30 83
Magnetic field measurement \#31 84
Magnetic field measurement \#32 85
Magnetic field measurement \#33 86
Magnetic field measurement \#34 87
Location of pad-mount transformer study 89
Data gathered for pad-mount transformer 90
Plaza condominium office space 92
Scale drawing of transformer vault 94
Scale drawing of office space 95
Background magnetic fields in Alan Mitchell's kitchen 99
Background magnetic fields in Alan Mitchell's livingroom 100
Background magnetic fields in Alan Mitchell's bedroom 101
Background magnetic fields in Glenn Hillesland's great room 102
Background magnetic fields in Glenn Hillesland's livingroom 103
Background magnetic fields in Glenn Hillesland's bedroom
104
104
Background magnetic fields in John Lamont's diningroom 105
Background magnetic fields in John Lamont's study 106
Background magnetic fields in John Lamont's family room 107
Background magnetic fields in John Lamont's bedroom 108
Flat 345 kV structure 119
LOTUS-123 plot made with aid of TLRead 120
Comparison of theoretical versus measured magnetic fields 121
EXPOCALC example area 123
Figure 5.5
Figure 5.6EXPOCALC example electric field contour plot129
Figure 5.7 Revised Commonwealth Edison main menu 131

Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Vertical 69 kV structure 139
Summary graph of six case run by modified Commonwealth Edison program140
Single 34.5 kV three phase line 142
Double three phase line, 161 kV and 69 kV 145
Double 161 kV three phase line 146

1. INTRODUCTION

Electric and magnetic fields have become a very controversial topic in the last few years. Epidemiologists have inferred these fields cause cancer in humans, primarily leukemia in young children. At the cellular level, researchers have yet to find the mechanism of interaction between the fields and cells. They have found cell reactions, but have not determined how it affects the organism as a whole. The human body has many counteractions to specific occurrences, and in many cases, effects at the cellular level are compensated by some other factor in the body. Another factor that seems to add to the controversy is the matter of dose response relationship. In most cases of harmful effects, more is worse (i.e., radiation, asbestos, poisoning, etc.). Magnetic fields do not seem to follow this relationship, either by the amount, the length, or the frequency of exposure. At this time, researchers have not established what type of exposure is harmful, if any.

It is the intent of this thesis to discuss what has been done at Iowa State University concerning the subject of magnetic fields. This discussion will cover a review of the literature, the measurement device used to gather data, some of the measurement activities that have been done, and software that exists to perform theoretical field calculations. The materials in this thesis are the thoughts of the author on the work that he has completed with the help of others. The acronyms that are commonly used in this thesis are summarized in Appendix A.

1.1 General Background

Magnetic and electric fields are two separate entities, but generally are mentioned together. One can exist without the other. Both types of fields exist
wherever electricity is present, whether it be large transmission lines, or small appliances. Electric fields are created whenever there is a pair of charges and those charges are separated. Magnetic fields, on the other hand, are created whenever those charges are moving. On the power system, electric fields are created whenever a line is energized, even if no current is flowing in it. Magnetic fields, however, are created only when there is current flowing in the line. Similarly, an appliance has an electric field associated with it whenever it is plugged in, but has a magnetic field associated with it only when the appliance is turned on. Units that are used to measure electric fields are volts/meter, or around transmission lines, kilovolts/meter (1000 volts/meter). Magnetic fields are measured in units of gauss, or milligauss ($1 / 1000$ th of a gauss). Electric fields are generally many times higher near transmission lines than are the electric fields found around the home. Magnetic fields, on the other hand, are much higher in close proximity to operating appliances in the home, than are magnetic fields found near transmission lines.

The electric and magnetic fields that are associated with the electrical system in the United States fit in the category of extremely low frequency (ELF) fields, specifically sixty hertz fields. Sixty hertz means that the currents flowing in the lines change direction one hundred twenty times a second, or sixty complete cycles a second. Figure 1.1 contains a picture of the path that electricity typically follows from generation to its end use in the home.

The earth has a magnetic and electric field associated with it, but it is a direct current field - it is constant in one direction always. The earth's electric field averages one hundred thirty volts/meter and the earth's magnetic field averages five hundred milligauss. It must be remembered that these fields are direct current, and

Figure 1.1. The electric power system [1]
therefore are quite different from the alternating sixty hertz fields that are of interest in this paper.

There is one major difference between electric and magnetic fields. Magnetic fields can penetrate most substances and are unperturbed when they encounter objects or biological materials. Electric fields are perturbed or changed when they encounter objects or biological materials. This makes magnetic fields much easier to measure than electric fields. When a human is brought into a room that has a magnetic field associated with it, the magnetic field remains the same within the room. However, when a human is brought into a room that has an electric field associated with it, the electric field changes everywhere in the room. The electric field level at the person's head may increase to as many as fifteen or twenty times greater than
before the person entered the electric field. The electric field is perturbed by objects, and this perturbation is dependent on the shape, size, and orientation of the object in the field.

Magnetic fields that are in the home environment are of interest because of the very long periods of time people are exposed to them. Recently, these fields have been measured by many different people and results vary depending on instrumentation, methodology, and interpretation. Generally, levels from one to five milligauss are considered as being in the range of ordinary background measurements found in the home.

The EPA just recently (mid-June, 1990) released a statement concerning their position in the magnetic field controversy. Their statement is based on a two years analysis of research conducted in all areas of interest, whether it be the cellular level, animal level, human level, epidemiologic level, or the engineering level. Their findings on the connection between ELF magnetic and electric fields was "a consistent pattern of response which suggests, but does not prove a causal link". Their final report has not been issued, but is being reviewed at the time of this thesis.

Several states have set limits for electric fields at the edges of electrical right-of-ways, and currently only Florida has both electric and magnetic field limits (Table 1.1). The state of New York is proposing to be the second state to limit magnetic fields emanating from transmission lines. New York state regulators are proposing to enforce the idea that magnetic fields at the edge of right-of-ways shall not exceed the levels that are currently found near existing 345 kV lines. This is to be an interim standard, not intended to indicate either safe or unsafe levels, merely
to guarantee that in the future, no one will be exposed to higher levels of fields at the edge of right-of-ways than those that already exist today. This policy is the one that many utility companies already endorse, support, and follow. Based on data collected in the state of New York, the edge of right-of-way limit will be set at 200 milligauss where a right-of-way currently exists. Where no right-of-way exists, the levels are to be less than 200 milligauss seventy-five feet away from 345 kV lines, and less than 200 milligauss fifty feet away from lines smaller than 345 kV . In comparison to these limits, data that has been collected in the past for New York showed that levels are less than 30 milligauss fifty percent of the time at the edge of

Table 1.1. State regulations limiting field strengths on transmission line right-of-ways [1]

State

Montana $\quad 1 \mathrm{kV} / \mathrm{m}$ at edge of ROW in residential area
Minnesota $\quad 8 \mathrm{kV} / \mathrm{m}$ maximum in ROW
New Jersey $\quad 3 \mathrm{kV} / \mathrm{m}$ at edge of ROW
New York $\quad 1.6 \mathrm{kV} / \mathrm{m}$ at edge of ROW
North Dakota $\quad 9 \mathrm{kV} / \mathrm{m}$ maximum in ROW
Oregon $\quad 9 \mathrm{kV} / \mathrm{m}$ maximum in ROW
Florida $\quad 10 \mathrm{kV} / \mathrm{m}($ for 500 kV$), 8 \mathrm{kV} / \mathrm{m}$ (for 230 kV)
maximum in ROW
$2 \mathrm{kV} / \mathrm{m}$ at edge of ROW all new lines
200 mG (for 500 kV single circuit),
250 mG (for 500 kV double circuit), 150 mG (for 230 kV) maximum at edge of ROW
the right-of-ways. These proposed levels may be exceeded for period of less than fifteen minutes only in the case of emergency conditions.

1.2 Historical Background

The original concern of the adverse health effects of electric and magnetic fields (EMF) dates back to the mid-1960s with a group of Soviet high voltage switchyard workers. They complained of general malaise, headaches, insomnia, fatigue, loss of libido, and general disorders of the cardiovascular system. There were several other studies done in Europe to try to replicate the Soviet results, but none were successful. The general concern at this time was that of the adverse health effects because of electric fields. Intensive study in the next decade seemed to clear electric fields from the concern list. It was found that the only danger from electric fields was receiving shocks from induced voltages on objects under high voltage lines, and this risk could be eliminated if proper grounding practices were used. Thus electric fields will not be discussed in the remainder of this document. It wasn't until the late 1970s when an article was published in the American Journal of Epidemiology [2] that the health effects of magnetic fields were first being questioned.

1.3 Nancy Wertheimer and the Denver Study

It was Nancy Wertheimer and Ed Leeper who first published this report that linked "high current configurations" and childhood cancer in the Denver area. Nancy Wertheimer is an epidemiologist. An epidemiologist is a person who conducts observational studies rather than experimental studies. Ed Leeper is a
physicist friend of Mrs. Wertheimer. It was their report which made the United States, and possibly the whole world, think that there may be some possible link between magnetic fields and adverse health effects.

Nancy Wertheimer was studying childhood leukemia incidence in the Denver area. She had obtained a list of every child and their birthplace in a four county area who had died of leukemia between 1950 and 1969. She also received a matched list of children who had not died of leukemia to serve as a control group. She then set out to visit these homes to see if there was some type of commonality that linked all of the leukemia deaths. After visiting many of these homes and not finding any connection between the deaths, she did notice a pole top transformer located in the back yard of one of the houses. She recalled seeing many of them recently. She originally didn't think much of the incident until she remembered reading an article which contained a picture where a fluorescent tube had been placed under a high voltage transmission line, causing the tube to glow. With these two thoughts, she began to think that maybe overhead transmission lines were the cause of the leukemia incidence she was studying.

A paragraph must be added here to explain a little about the type of distribution systems that were around the homes Nancy Wertheimer was observing. Each pole top transformer she found served many homes. These pole top transformers stepped down the voltage from 13,000 volts down to $120 / 240$ volts, which is the voltage residential customers use. After the distribution transformer, the current is carried along alleys in distribution lines called secondaries, until it finally branches off into customers' homes. If you are the last person on the secondary, your electricity has traveled by everyone else's home on the way to yours. If you
are the second to last person on the secondary, your electricity has traveled by everyone else's home on the way to yours except the last one, etc. This continues on so all the current traveling on the secondary goes by the first house, and generally the second house, before branching into other homes to reduce the loading on the secondary.

Nancy Wertheimer started retracing her steps and found that there was a much greater chance of finding a home with leukemia in the first or second house away from the pole top transformer. After the second house, the rate of leukemia dropped off significantly. She began talking about her results to her friend, Ed Leeper, and it was he who ruled out the electric field because the electric field would be constant under all the secondary lines. He proposed that the problem was with the magnetic fields because they were dependent on the current in the line. He made a crude gauss meter which had a speaker that would hum in the presence of magnetic fields. The higher the field, the louder the hum. Nancy Wertheimer took this device to homes she had studied, and as she passed from the second house to the third house, the hum dropped off. She believed to have discovered something. Hence, the beginning of the magnetic field concern in the United States.

Early on, sixty hertz magnetic fields were dismissed as a cancer causing agent because the fields do not possess enough energy to cause cell damage. It is this cell damage, growing out of control, which causes cancer. The argument of lack of energy was used for quite some time by many people until the medical profession's knowledge of cancer grew. Cancer is now viewed as a two stage process. The first stage is initiation, or the initial cell damage; the second stage is promotion, or cell growth and replication. Initial cell damage occurs when the DNA, which carries cell
information, somehow is damaged. This damage may exist for years before some kind of promotion causes this damaged cell to begin to multiply out of control. Either process alone will not cause cancer. If magnetic fields are found to be a cancer causing agent, it is hypothesized to be in the stage of cancer promotion.

1.4 Media Coverage

Much of the concern of the possible health effects has been brought about by the media and its increased coverage of the topic. Examples are magazine articles in The New Yorker [3-6], Family Circle [7], and Newsweek [8], numerous newspaper stories similar to the story appearing in the Des Moines Register [9]; and television talk shows such as Good Morning America [10], and Nightline [11]. Paul Brodeur, author of The New Yorker articles, has recently written a book entitled Currents of Death [12] leaving no question to the reader as to his view on the subject.

What many people do not realize is that the verdict on the health effects of magnetic fields is not in yet. Some scientific studies indicate that magnetic fields have adverse effects, while others indicate there are no effects. The scientific profession must determine what levels of field exposure currently exist in our environment, and then the medical profession must determine what, if any health effects result from exposure to magnetic fields. Only then may practical exposure limits be set, if required.

In addition, many people are unaware that utility transmission lines, distribution lines, and transformers are not the only sources of magnetic fields. Some household appliances and electrical devices found in the home produce levels of
magnetic fields that are in many cases hundreds of times higher than those levels found near utility equipment.

1.5 Research at Iowa State University

It is the goal of this document to present what research has been done at Iowa State University in the past, and what is planned to be done in the near future. The research activities have centered mostly around characterizing magnetic fields strengths that exist in our environment. This has been done by taking measurements or using programs that compute the strengths of the fields that exist. This data has provided information that has been used in responding to public concerns and determining what may be done to limit exposure.

The collection of data, the hardware and software used to collect data, the software used in modeling exposure, and other related activities are all reported in the following sections. It is the hope of this document to clarify what is known and what is not known currently concerning the subject of magnetic fields.

2. LITERATURE REVIEW

2.1 Introduction

A complete literature review on the topic of magnetic and electric fields would be an immense task because of the popularity of the topic and the increasing amount of recent media coverage. Although many newspaper and magazine articles were found covering many aspects of the subject, very few are listed in this review. This literature review was conducted with emphasis in two areas, the first area consists of some of the more famous articles and papers that have been written, and the second area consists of technical papers that this engineer/author has found beneficial in his studies of the subject. The material is presented under the following categories: general, medical, epidemiologic, and engineering.

2.2 General

Included in the general section of the literature review is a variety of material, much of which can be considered background material. Materials that are good for the first time reader and answer common questions are [1,13-18]. This material is general in nature and does not get too specific about any one topic, and thus is a good overview of the problem.

A good monthly publication is written by Robert S. Banks, a consultant who keeps track of all the latest happenings in the magnetic and electric field controversy. This publication entitled "Transmission/Distribution Health and Safety Report - A monthly review of research and regulatory developments" [19], contains a variety of up to date information.

A review of literature would not be complete without covering the author, Mr. Paul Brodeur. Mr. Brodeur is a well known author advocating that magnetic and electric fields are harmful. A writer for the New Yorker, he has had four lengthy articles published in it [3-6]. In these articles, he accuses the government and utilities of covering up the biggest health menace since asbestos, magnetic fields from electrical lines. Mr. Brodeur prides himself in being the first to publish material about the dangers of asbestos. Mr. Brodeur also has written a book entitled Currents of Death [12], leaving no doubt on his views of the controversial subject of the health effects of magnetic fields. Also appearing recently in MacWorld is an article by Mr. Brodeur on the dangers of computer terminals [20]. Mr. Brodeur does do a good job of presenting evidence and everything he writes is well documented. What Mr. Brodeur fails to do is present the other side of the story. He also has a tendency to include material that sounds damaging, but is totally unrelated. Mr. Brodeur's material is a must to read, because this is the type of material that is read by a majority of the public.

2.3 Medical

The area of medical studies concerning health effects of magnetic and electric fields is always changing, therefore only recent papers are of any use since earlier hypothesis are either thrown out or are being studied further. This is an area in which the author has limited knowledge. It is important, however, to get a feeling of what research has been and continues to be conducted. Included in this section are some papers that instill a feeling of how the problem has evolved.

Several papers have been published that are a literature review themselves that cover specifically health effects $[13,14,21,22]$. These are extremely helpful because they generally summarize the results of each individual paper contained in the review. This type of material usually gives the author enough information on the ongoing research in the medical field to keep him up to date.

A conference that was found extremely useful was one sponsored by EPRI in 1989 in Delevan, Wisconsin, which was entitled Power-Frequency Electric and Magnetic Field Laboratory Research [23]. This three-day conference was made up of medical professionals presenting current knowledge to a non-technical audience.

Other types of materials containing medical information presented in a non-technical format are [24-26]. The best of these is probably [24] which is a Background Paper done by Carnegie Mellon University for the United States Office of Technology Assessment.

A recently released paper, Immunological and Biochemical Effects of $60-\mathrm{Hz}$ Electric and Magnetic Fields [27], was done for the U.S. Department of Energy by the Midwest Research Institute, and is probably one of the more recent papers published.

2.4 Epidemiologic

Epidemiologic studies have gotten a lot of publicity since the publication of the most important driving force for the further study of magnetic and electric fields by Nancy Wertheimer and Ed Leeper [2]. Their paper was the first published in the United States and created a tremendous controversy when their study linked childhood leukemia and the presence of distribution lines. A second study they
published, Adult Cancer Related to Electrical Wires Near the Home [28], was seen as an improved study which found a weaker correlation.

Many other epidemiologic type studies have been conducted, some which find a statistical correlation, others that do not. David A. Savitz is probably the best known and respected epidemiologist today. David Savitz, et al. [29] recently released a paper that studied the incidence of childhood cancer and magnetic field exposure from electric applications and found no obvious connection. Another recent paper studied the use of electric blankets and incidence of testicular cancer [30].

2.5 Engineering

The literature review of technical material is quite extensive, since engineering is the main thrust of this thesis. A variety of topics can be studied when considering engineering topics, and a few papers for each category have been listed.

The first general topic is the study of fields resulting from electrical transmission and distribution equipment. A variety of papers indicate how to measure these types of fields $[31-36]$. Other studies and papers were done on how to minimize these types of fields by proper operation and design of the electrical system [37-39].

A second general topic is the study of fields and measurements resulting from things other than electrical transmission and distribution equipment. These cover a variety of topics ranging from appliances [40-42] to computer display terminals [43]. Low frequency fields from naval communication facilities were studied in [44].

Another topic that received some study was how to shield magnetic fields. This literature consisted of a set of handbooks with two books that were extremely
useful [45-46]. Also found was a paper that presented material on how to shield a room [47].

Last, was some literature that fell into the category of measuring devices and tools which include computational techniques. Those concerning measuring devices were [48-52] where [52] gives an evaluation of many different devices. Programs that are used in the calculation of magnetic and electric fields are the TLWorkstation [53] and EXPOCALC [54].

3. MEASUREMENT DEVICE

3.1 Introduction

Chapter 3 describes the EMDEX unit, the instrument that is used at Iowa State University to collect magnetic field data. Included with this discussion of the EMDEX unit is a discussion of the software used in communicating with it, accessories that are used with the EMDEX, and a couple of the studies sponsored by EPRI for which the EMDEX was originally developed.

3.2 EMDEX

The term EMDEX stands for Electric and Magnetic Field Digital Exposure. It is a name given to the device that does just that, it measures electric and magnetic field exposure. It was originally developed by General Electric staff for an EPRI study $[48,49]$ that consisted of fifty-five utilities working in a coordinated effort to study the exposure of utility employees in various work environments. The study came about because of epidemiologic studies such as Nancy Wertheimer's that suggested a link between exposure to magnetic fields and cancer, but where actual magnetic field measurements were not taken. The total EMDEX system consists of the hardware, software, and methodology used in conducting the study.

The EMDEX unit is a remarkable self-contained portable device that measures $2 \times 6 \times 4.5$ inches (Figure 3.1). It contains four coils, each with ten thousand turns of a find copper wire. Three of these coils are used to sense powerfrequency magnetic fields in each of three orthogonal axis, the fourth is used to sense the earth's geomagnetic field in order to detect motion. To measure electric

Figure 3.1. EPRI EMDEX unit

Table 3.1. Specifications for original EMDEX

	Magnetic Field Range (mG)			
	0	1	2	3
Full Scale:	0-25	0-250	0-2500	0-25000
Resolution:	0.1	1	10	100
Offset:	$\pm .5$	± 5.0	± 50	± 500
Accuracy:	Range $0-2$: $\pm 5 \%$ of full scale reading Range 3: -20% of full scale reading			

Frequency Response: -3 dB from 15 Hz to 80 Hz

> Electric Field Range (kV/m)

0
Full Scale: $\overline{0-0.556}$
Resolution: 0.0022
Offset: $\pm .011$

1
$0-5.56$
0.022
$\pm .11$

Range 0-2: $\pm 5 \%$ of full scale reading
Range 3: $+0 \%,-12 \%$ of full scale reading
Frequency Response: -3 dB from 35 Hz to 300 Hz
fields, an electric field sensor can be connected to the unit, either a sash that can be worn, or a sock that can be slipped around the outside of the EMDEX unit. When the unit is operating and collecting data versus time, it stores magnetic field data, electric field data, field motion indicator data, and the time that those measurements are taken on an on-board microcomputer. Specifications are shown in Table 3.1.

The software used with the EMDEX was developed by Enertech, and was created so the EMDEX could be run from an IBM-PC or compatible computer. The PC can communicate with the EMDEX through a serial connection cable that connects between the EMDEX and the PC. The software is used in initializing the EMDEX unit with various types of information, such as how frequently to take measurements, the time, the date, and the program which to use as the operating system in the EMDEX unit. The unit can then be disconnected from the PC and carried around, totally portable, relying only on its nine-volt battery for power. Once the data has been collected, the EMDEX is returned to the PC and reconnected so the software package can transfer the data that had been collected back to the PC. The software of the PC then can analyze, as well as prepare tables and graphs of the data.

As mentioned earlier, the EMDEX unit was originally constructed for use in an EPRI project. This project was called EMDEX Phase I and ended in Spring of 1989. The methodology of the study for the project was developed by Dan Bracken and Associates. The methodology told how data was to be collected and what to do with the data that had been collected. EPRI is still compiling the data, however, a report is to be released near the time of the completion of this thesis.

The main objective of EMDEX Phase I was to characterize magnetic field exposure among utility workers. A very broad range of utility workers was selected for the project and consisted of everyone from linemen, to management, to office staff, to engineers. Employees were encouraged to volunteer for the project. From the list of volunteers, individuals were selected to fill quotas of the different types of workers that were required. The people selected to participate in the project were sub-divided into the three groups of subjects based on the time period they were to wear the EMDEX unit: (1) subjects who were to only wear the unit during working hours, (2) twenty-four hour subjects who would not only wear the unit at work, but would also wear it at home, (3) weekend subjects who would wear the unit over the weekend, whether working or not. The employees would be instructed in the use of the EMDEX unit and what was expected of them while wearing the unit, which was basically to do their job as normal and record in a logbook any change of environment. Examples of this are: going to and from lunch, changing from traveling to working on an energized line, or going home for the day. Examples of the types of data that were collected in Phase I of the EMDEX project are included in Figures 3.2-3.13. Each plot contains eight hours of a typical day for the employee. The horizontal axis is time and the vertical axis is the magnitude of the measurement, with a maximum of either $10 \mathrm{mG}, 50 \mathrm{mG}$, or 500 mG .

Iowa State's role in the EMDEX Phase I project was to act as a coordinator for four Iowa utilities (Iowa Electric Light and Power, Iowa Power and Light Company, Iowa Public Service, and Iowa Southern Utilities) participating in the project. Iowa State University representative attended all of the preliminary meetings for the EMDEX Phase I and brought the information back to the

Figure 3.2. Phase I EMDEX project data

Figure 3.3. Phase I EMDEX project data

Figure 3.4. Phase I EMDEX project data

Figure 3.5. Phase I EMDEX project data

Figure 3.6. Phase I EMDEX project data

Figure 3.7. Phase I EMDEX project data

Figure 3.8. Phase I EMDEX project data

Figure 3.9. Phase I EMDEX project data

Figure 3.10. Phase I EMDEX project data

Figure 3.11. Phase I EMDEX project data

Figure 3.12. Phase I EMDEX project data

Figure 3.13. Phase I EMDEX project data
participating utilities. The State of Iowa was acting as one utility in the project through the coordination of Iowa State University.

The second phase of the EMDEX Project, EMDEX Phase II, began in late July of 1990. Whereas the first project was to find magnetic field exposure of utility workers, the second phase of the project is to characterize the magnetic field exposure found in homes. Also under study is the electrical system that is located within one hundred fifty feet of each home. After studying the electrical system within the area, and consulting with utility system maps and utility employees, if needed, the house is classified in a wire-coding category, dependent on the type of the line, the size of wires, and the proximity of the lines to the house. Lines fell into one five categories: (1) very high current configuration, (2) ordinary high current configuration, (3) ordinary low current configuration, (4) very low current configuration, or (5) underground (see Table 3.2). It is the goal of the project to prove or disprove the methods used by epidemiological studies that used wire coding as a surrogate for magnetic fields measurements.

In this project, the same four utilities that participated in the Phase I project are again participating. Iowa State University is again acting as coordinator for the Phase II project, but is also participating in the project. Each utility, including Iowa State University, is required to wire code and select twelve homes, with a goal to find three homes in each wire code category, which leaves two homes that the site coordinator can select independently. Magnetic field measurements are to be taken in each home for three days at a time, for three different times of the year summer, fall or spring, and winter. Figures $3.14-3.16$ are examples of approx-

Table 3.2. Distance criteria for wire code categories in feet

	Transmission	Prima	y Distr	bution	Secon	y Dis
Category	Transuission Line	$\begin{gathered} 6 \\ \text { Phase } \end{gathered}$	Thick 3 Phase	Thin 3 Phase	First Span	Other Span
1) VHCC	<50	<50	<50	<25		
2) OHCC	<130	<130	<130	<64	<50	
3) OLCC				<130	<130	<130
4) VLCC	None of the above and the			e secondar secondar	is overhead.	
5) Underg	nd None of	the abo	ve and the		is un	rgroun

imately three day periods of magnetic field measurements that have been collected by Iowa State University as part of their participation in Phase II.

3.3 EMDEXC

A few comments must be made about the progress of the EMDEX unit. After the completion of the EMDEX Phase I project, the EMDEX units were released commercially by Electric Field Measurements [50]. The released version of the EMDEX, called the EMDEXC (Figure 3.17), had many improvements and used a totally different software package with which to initialize the unit and analyze the data. The Iowa Test and Evaluation Facility (ITEF) purchased six of these EMDEXC units so that Iowa State University and ITEF's member utilities could use them in data collection projects.

Figure 3.14. Phase II EMDEX project data

Figure 3.15. Phase II EMDEX project data

Figure 3.16. Phase II EMDEX project data

Improvements of the commercial EMDEXC over the original EMDEX include the following:

1. Data acquisition may be initiated in independent sequences.
2. Data may be taken at regular time intervals, or regular distance intervals with the use of a distance triggering enhancement such as the one presented in Section 3.4, or by manually pushing a button.
3. A text file of arbitrary length may be loaded on the EMDEXC unit when initializing to document what data is intended to be recorded.
4. Increased versatility when handling data through the use of macros.

Figure 3.17. The EMDEXC

The biggest improvement is that data acquisition can be now initiated at periodic intervals. No longer does the EMDEX unit need to be on until the data that have been collected are downloaded. The unit can now be initialized and shut off until data are to be next collected, or until the unit is to be downloaded. This new feature allows battery power to be conserved and extends the period of time that measurements can be collected.

The second biggest improvement is that data acquisition can be triggered externally. This means measurements can be taken by the push of a button on the EMDEXC or by a triggering device mounted on a measuring wheel which is plugged into the EMDEXC, allowing to take measurements versus distance. A device to take measurements versus distance was developed at Iowa State University and is explained later in this chapter.

The software program used with the EMDEXC is also called EMDEXC. Its main advantage is its versatility. The Datacalc software developed for the original EPRI studies is definitely more user friendly, but does not easily allow for handling large blocks of data. Also included with the EMDEXC distribution package is a video tape that helps the user get acquainted with the uses of the software.

Also obtained by ITEF with the six EMDEXCs were two devices that can be used in calibrating both the EMDEXCs and the original EMDEX units. It consists of a rectangular coil that is two feet by three feet and contains five hundred turns of copper wire. This calibration unit is plugged into the wall and the field created by the coiled wire can then be controlled by a potentiometer. The calibration device also has a connection so that a digital ammeter can be connected, and the magnetic field can be calculated by measuring the current in the coil and multiplying by a
coefficient. One problem that was found is that one must be careful when selecting the calibration location. Care must be taken to avoid any large magnetic fields that may be nearby, and also to avoid any nearby large metal objects that may concentrate the field. The only time a problem was encountered when calibrating an EMDEXC unit was when a metal desk top was being used as the surface on which to calibrate. The metal on the desk top concentrated the lines of flux, not allowing for the correct calibration of the unit. In the one and one-half years that the EMDEXC units have been used at Iowa State University, no EMDEXC unit has required recalibration. Had this been necessary, it would have been shipped to the manufacturer for recalibration.

3.4 Measuring Wheel

After ITEF acquired the six EMDEXCs, it was possible to take measurements by externally triggering the units. No longer is the EMDEXC limited to taking only measurements versus time. All that is required is to short a connection that plugs into the EMDEXC. The manufacturer of the EMDEXC, Electric Field Measurements, has available a measuring wheel package that could be used to externally trigger the EMDEXC versus distance. This package was too costly for Iowa State University, especially since multiple wheels were required because Iowa State University now had six measuring devices. A new and cheaper method to take measurements versus distance was set as a goal.

The first step to achieve this goal was to determine what was required to trigger the EMDEXC to take measurements. The manufacturer's user manual provided no information, so various ideas were tried, not necessarily in the most
logical order. The first was to build a pulse generator, thinking a pulse was what was required to trigger the EMDEXC to take measurements. This was tried with a variety of pulse sizes and durations to no avail. Once when we were trying to get one of the pulse generators to work, we accidentally got the EMDEXC to gather data. The astounding thing about this is that the pulse generator wasn't even on. It was by chance that two wires were accidentally shorted. It was then that we discovered that all that was needed to take a measurement was to electrically complete a circuit. After this discovery, we set out to develop a set of mechanical contacts that could be mounted on a typical measuring wheel.

We tried a variety of mechanical contacts, with little satisfaction. It was then we discovered a magnetic reed switch that consisted of two parts, each about the size of a pencil eraser. The first part consisted of a switch that when acted on by an external constant magnetic field, would complete a circuit connected to the EMDEXC. The second part was simply an ordinary magnet. The switch was mounted on the frame of the measuring wheel, with the small magnet place on the rim of the wheel. Now, when the wheel turned, a data frame was taken every revolution of the wheel, or every four feet (the circumference of the wheel). With the addition of another magnet on the opposite side of the wheel, a data frame could be taken with every half of a revolution, or every two feet. Collection of data much faster than this was difficult because of the constraint of the EMDEXC to collect data no more than one data frame per second. A slow walk is approximately two feet per second.

After receiving the measuring wheel back from the welder with a few modifications, we were able to test our new data collection technique. The only additional
modification made was to glue the magnets on the measuring wheel, because when data was gathered in high grass, magnets were subject to being knocked off. Our modified measuring wheel was built at about one-fifth the cost of the commercial product.

4. MEASUREMENT ACTIVITIES

4.1 Introduction

Chapter 4 is a review of some of the measurement activities that have been performed by researchers at Iowa State University. These activities include a variety of measurement locations, but in each case it is the sixty hertz magnetic fields that are of interest. Discussed first is a study of magnetic fields created by distribution lines. Second is a study of a pad-mount transformer and the fields that are caused by its presence in a back yard. Next is a study of an office space located above a transformer vault in a multi-story building. Another project is a joint project between the College of Veterinary Medicine and the Electrical Engineering department, both of Iowa State University. Two studies that measured magnetic fields in the home are also included. The first studied background magnetic fields, the second studied magnetic fields around various electrical devices.

4.2 City of Ames

The City of Ames' study is an examination of magnetic fields caused by distribution systems. The Ames Municipal Electric System had been contacted by a number of customers who were concerned about the magnetic fields they were being exposed to by the electrical equipment that was located in the vicinity of their homes. The City of Ames then contacted Iowa State University in search of pertinent information. Since we had not studied any distribution systems, a joint project was proposed and carried out. The City of Ames' role was to provide system maps and loading information; Iowa State University was to provide the equipment and manpower to measure the magnetic fields.

The measurements were taken at two different times. The first set of measurements gathered distribution structure and magnetic field data at various sites. Both underground and overhead data were collected. Overhead lines that were measured consisted of $69 \mathrm{kV}, 13.8 \mathrm{kV}$, and 4 kV lines. Underground measurements that were collected consisted of the same 13.8 kV and 4 kV lines. Also measured was a 208 V underground service drop. For each line, an estimate of the loading on the line at the time of data collection was made. The magnetic field profiles obtained are shown in Figures 4.1-4.6.

The second set of measurements consisted of analyzing an entire customers' lot to see how each part of the distribution equipment (i.e., primary, secondary, distribution transformer, and service drop) contributed to the background magnetic fields in the vicinity of each home. Measurements of various types were collected outside six homes within the City of Ames' service territory. Data were also gathered inside two of these homes. Again, at each of these locations it was noted what type of electrical lines existed in the area of their home and an estimate of the loading on these lines at the time of measurement. The six homes where data were gathered are illustrated in Figure 4.7. The addresses of these homes are:

1010 Curtis
1106 Curtis
1518 Carroll
120 O'Neil
1618 Top-O-Hollow
2226 Donald

69 kV Overhead

Feet

Line Loading - $69 \mathrm{kV}-78.9 \mathrm{~A}$

Figure 4.1. City of Ames distribution line data

13.8 kV Overhead

Line Loading - $13.8 \mathrm{kV}-88.3 \mathrm{~A}$

Figure 4.2. City of Ames distribution line data

4 kV Overhead

Feet

Figure 4.3. City of Ames distribution line data

13.8 kV Underground

Feet

MR 24- UG E. OF STATE

Line Loading - $13.8 \mathrm{kV}-88.3 \mathrm{~A}$

Figure 4.4. City of Ames distribution line data

4 kV Underground

Figure 4.5. City of Ames distribution line data

208 V Underground Service Drop

Line Loading - $208 \mathrm{~V}-43 \mathrm{~kW}$

Figure 4.6. City of Ames distribution line data

Figure 4.7. Map of the City of Ames

A map of the lot, explanations of what data were gathered, and the data gathered at each home are provided in Figures 4.8-4.43. When possible, data were taken perpendicular and parallel to the electrical lines. Superimposed on the lot diagrams are lines with arrows, which show the path where measurements were taken. The numbers on the arrowed lines correspond to the profile graph showing the data that were collected.

It can be seen that the distribution system contributes very insignificantly to the overall magnetic field level in the six homes that were studied. The only fields that were found to contribute were the service drops. Since electricity must reach the house, very little can be done to avoid the fields created by the service drop.

4.3 Pad-Mount Transformer

The pad-mount transformer study was a study conducted by Iowa State University researchers of the magnetic fields that exist in the back yard of a home where a fifty kVA pad-mount transformer is located. The purpose of this study was to determine the typical strengths of magnetic fields that exist in an area around a pad-mount transformer. Iowa State University conducted the study after being contacted by Iowa Power and Light Company in Des Moines, Iowa.

On August 4, 1989, representatives of Iowa State University visited the site in order to gather data. Measurements were taken in the middle of the afternoon when temperatures reached the upper 90 s . This situation was ideal, since the site was in a residential area and many homes were running their air conditioners. This increase in electricity usage (i.e., an increase in line current) maximizes the fields that were measured since magnetic fields are proportional to the currents on the lines.

Figure 4.8. Lot at 1010 Curtis

Figure 4.9. Magnetic field measurement \#3

Figure 4.10. Magnetic field measurement \#4

Figure 4.11. Magnetic field measurement \#5

Figure 4.12. Magnetic field measurement \#6

Figure 4.13. Magnetic field measurement \#7

Figure 4.14. Magnetic field measurement \#8

Figure 4.15. Magnetic field measurement \#9

Figure 4.16. Lot at 1106 Curtis

Figure 4.17. Magnetic field measurement \#10

Figure 4.18. Magnetic field measurement \#11

Figure 4.19. Magnetic field measurement \#12

Figure 4.20. Lot at 1518 Carroll

Figure 4.21. Magnetic field measurement \#14

Figure 4.22. Magnetic field measurement \#16

Figure 4.23. Magnetic field measurement \#17

Magnetic Field Measurements - City of Ames

Figure 4.24. Magnetic field measurement \#18

Figure 4.25. Magnetic field measurement \#19

Figure 4.26. Lot at 120 O'neil

Figure 4.27. Magnetic field measurement \#20

Figure 4.28. Magnetic field measurement \#21

Figure 4.29. Magnetic field measurement \#22

Figure 4.30. Magnetic field measurement \#23

Figure 4.31. Lot at 1618 Top-O-Hollow

Figure 4.32. Magnetic field measurement \#24

Figure 4.33. Magnetic field measurement \#25

Figure 4.34. Magnetic field measurement \#26

Figure 4.35. Lot at 2226 Donald Street

Figure 4.36. Magnetic field measurement \#27

Figure 4.37. Magnetic field measurement \#28

Figure 4.38. Magnetic field measurement \#29

Figure 4.39. Magnetic field measurement \#30

Figure 4.40. Magnetic field measurement \#31

Figure 4.41. Magnetic field measurement \#32

Figure 4.42. Magnetic field measurement \#33

Magnetic Field Measurements - City of Ames

Figure 4.43. Magnetic field measurement \#34

The procedure used in taking measurements was to lay out a four foot grid over the entire back yard and take measurements with an EMDEXC at each grid crossing. This was made possible with the measuring wheel described in the previous chapter. This method would describe the strengths of the fields throughout the yard. After completing the data collection, the data were downloaded, results were obtained, and are displayed in Figures 4.44 and 4.45.

The values obtained in the back yard ranged from 0.82 milligauss to 8.97 milligauss as shown on the following pages. Magnetic field sources identified in the rear of the yard were the transformer, a $240 / 120$ volt underground secondary running along the rear lot line, and a two-phase $13-\mathrm{kV}$ underground feeder that feeds the transformer. The highest readings were found near the transformer, but diminished rapidly with distance. A consistent range of values from 5 to 7 milligauss was found along the south side of the yard above where the two-phase underground feeder ran that fed the pad-mounted transformer.

The results of this study indicate that distribution transformers do have magnetic fields that are inherit with them, but when placed sufficiently far from the home, have little effect on the background fields found in the home. What does seem to contribute to the background field in the home are the underground lines that supply electricity to the pad-mount transformer. It is assumed that the underground service drop is located in the same trench with the underground feeder, thus contributing to the higher values found in this area of the yard.

Figure 4.44. Location of pad-mount transformer study

NOTE: THE ABOVE GRID IS LAYED OUT IN $4^{\prime} \times 4$ SECTIONS.

Figure 4.45. Data gathered for pad-mount transformer

4.4 Plaza Condominiums

The Plaza Condominium study was a study of magnetic fields that existed in several offices. The offices are located in the Plaza Condominiums, a downtown Des Moines office and condominium tower. Iowa Power and Light Company had received a call from a law firm who had just moved into an office space on the second floor (Figure 4.46). After the law firm had installed their computer equipment, they noticed that the text that appeared on their computer monitor screens was unstable. They moved the computers to another area in the office, and the phenomena ceased. They contacted the people who leased them their computer equipment, and with their help decided to call Iowa Power and Light Company. After finding that the rooms directly under the office contained the transformers that transform the voltage to the level that is distributed throughout the building, David R. Ahlberg, Senior Customer Representative at Iowa Power and Light Company, contacted Iowa State University to take measurements to see if the problem was one of magnetic fields.

After learning the specifics about the problem, Iowa State University representatives went to Des Moines to measure the magnetic fields that existed in the office complex and to determine if magnetic fields were indeed the problem. A two-foot grid was laid throughout the part of the office where the problem seemed to exist. At every intersection of the grid, a measurement was taken with an EMDEXC. Originally, the measuring wheel was going to be used with triggering every two feet, but because of the size of the rooms and the furniture in them, it was decided that this would not be very practical, so the grid was laid out. The same type of grid

Figure 4.46. Plaza condominium office space
was used in taking measurements in the transformer vault, the suspected source of the magnetic fields. The data from this room were also collected and stored on the EMDEXC unit. Both sets of data were then downloaded and analyzed.

After downloading the data, a scale diagram of the transformer vault (Figure 4.47) and the office space (Figure 4.48) were drawn with the two-foot grid pattern laid out. At each grid crossing, the measurement recorded at that spot was written on the diagram. After all the values had been placed on the grid, a contour map was drawn with the aid of another computer program. Values of the magnetic fields within the office space varied from 1.42 milligauss to 146 milligauss. There were two areas within the office space that registered consistently above 100 mil ligauss. After overlaying the transformer vault drawing on the office space drawing, it was evident that the areas of highest readings were where the three phase currents from the transformer bus work passed through the wall at the ceiling of the vault and continued to the office building switch gear. Values of magnetic fields that were collected in the transformer vault ranged from 8 milligauss to 314 milligauss.

The conclusions of the study seem to point to magnetic fields as being the cause of the computer problems. Until the concern about high magnetic fields is resolved, the computers have been moved to other parts of the office. Various methods and techniques are being investigated to determine how to reduce these field levels. Extremely helpful is a paper entitled "Shielding Against Extra-LowFrequency (ELF) Magnetic Fields" [47] presented by L. A. Cresswell and C. K. Gowers at the Electric Energy Conference in Sydney, 1989. Also helpful is a set of handbooks entitled "A Handbook Series on Electromagnetic Interference and Compatibility". Particularly useful is Volume 1, "Fundamentals of Electromagnetic

Figure 4.47. Scale drawing of transformer vault

Figure 4.48. Scale drawing of office space

Capabilities" [46], and Volume 3, "Electromagnetic Shielding" [45] which describes in more depth the procedures used in reducing magnetic fields. Other ideas have been to relocate the bus work from the ceiling of the transformer vault, which is also the floor of the office, thus creating a greater distance between the source and the computers. Another possibility is moving the bus work closer together, allowing for greater cancellation of the fields.

4.5 College of Veterinary Medicine

Collecting data for the College of Veterinary Medicine at Iowa State University is an on-going joint project with the Department of Electrical Engineering. The College of Veterinary Medicine has the capability of removing a freshly fertilized egg from a mother species of about a dozen animals, and sustaining the life of the egg for about seventy-two hours in an incubator, before having to replace it in the mother, another female of the same species, or a female of another species. They have actually had a rat give birth to rabbits. The Department of Electrical Engineering originally built an exposure chamber for Veterinary Medicine, more specifically Dr. Michael Dooley, DVM, so he could expose freshly fertilized eggs to a known and controlled magnetic field. The logic behind this was that rapid cell growth takes place at this stage of development, and many of the offsprings' traits are established during this period. It is felt that if any cell damage is done by magnetic field exposure, this damage will manifest itself in the offspring. If any unusual conditions are found in the later developing animal, it is felt that they will be due to the effects of the magnetic fields exposure of the fertilized egg. Of course, control groups that are not exposed to magnetic fields will also be studied.

A problem arose when background magnetic fields were being measured in the lab incubator used for this research. Surprisingly, the magnetic fields found in the incubator ranged from about 800 milligauss on the top shelf, to about 60 milligauss on the bottom shelf. A desirable magnetic field level would be a maximum ambient background field of approximately 5 milligauss. It was determined that the source of the fields was a fan in the incubator. It was determined that it was impossible to find a control group where no magnetic field exposure would exist!

Various alternatives are being studied in trying to reduce the magnetic fields in the incubator. The first alternative was to try to shield the magnetic fields being generated by the fan. Various materials such as Mumetal and CO-NETIC, which are both materials that are capable of shielding magnetic fields, have been tried with very limited success. Some reduction of the magnetic fields did occur, but not to the magnitude that is desired. Another approach was to attempt to find an incubator that did not use a fan. Measurements were taken in a variety of incubators, but high magnetic fields caused by a variety of sources, such as heaters, or other electrical controls always seemed to be a problem. Manufacturers were contacted to see if an incubator with low magnetic fields was available. Most manufacturers gave the impression that this is the first time they have been approached with this type of concern.

The current status of the project is that the College of Veterinary Medicine is still attempting to correct the magnetic fields in the incubator. Probably more promising in the immediate future is a technique developed where the eggs can be maintained outside an incubator, although for a much shorter period of time. This
will allow some studies to begin on the effects from magnetic fields, while the incubator problem is being corrected.

4.6 Background Magnetic Field Measurements

The objective of taking home measurements was to determine a typical value for the level of background magnetic fields. Although our effort did not consist of a large number of homes, it is believed that a fairly representative sample was obtained. The measurements that we found were similar to those that were found by Dr. David Savitz. His measurements of background magnetic fields in residences were found to be around 2.0 milligauss.

Measurements were taken in three homes on January 19, 1989, at various locations throughout the house. Most measurements were taken for approximately one hour and are displayed in Figures 4.49 through 4.58. The first set of measurements were in Alan J. Mitchell's home at 115B University Village (\#7, Figure 4.7). His home is a two story condominium-type apartment where he has neighbors on both sides. All electrical services that are in the area are underground. Readings were taken in the kitchen with the unit on the kitchen table where measurements ranged from 0.3 milligauss to 1.5 milligauss. The next measurements were taken in the living room with the unit on the couch. Measurements here ranged from 0.2 milligauss to 0.4 milligauss. Finally measurements were taken in the master bedroom with the unit placed on the bed. Measurements here ranged from 0.2 milligauss to 0.4 milligauss.


```
\(X\) axis: Frame Number
```

Figure 4.49. Background magnetic fields in Alan Mitchell's kitchen

Magnetic Field Measurements - Background

Figure 4.50. Background magnetic fields in Alan Mitchell's livingroom

Figure 4.51. Background magnetic fields in Alan Mitchell's bedroom

Magnetic Field Measurements - Background

Figure 4.52. Background magnetic fields in Glenn Hillesland's great room

Figure 4.53. Background magnetic fields in Glenn Hillesland's livingroom

Figure 4.54. Background magnetic fields in Glenn Hillesland's bedroom

Figure 4.55. Background magnetic fields in John Lamont's dining room

Figure 4.56. Background magnetic fields in John Lamont's study

Figure 4.57. Background magnetic fields in John Lamont's family room

Figure 4.58. Background magnetic fields in John Lamont's bedroom

The next home where background magnetic field information was collected belongs to Glenn G. Hillesland at 2315 Buchanan Drive (\#8, Figure 4.7). His home is a two story house with an underground service drop, an underground secondary and primary located in front of the house, and an overhead primary and transmission line located one hundred fifty feet to the side of his house. Measurements were taken first in the great room where measurements ranged from 1.1 milligauss to 1.3 milligauss. The next measurements were taken in the living room where measurements range from 1.2 milligauss to 1.4 milligauss with a short period of time around 2.7 milligauss. Lastly measurements were taken in the master bedroom where readings ranged from 1.1 milligauss to 1.3 milligauss.

The last of the three homes where background magnetic field data were collected belongs to John Wm. Lamont at 1005 Idaho Avenue (\#9, Figure 4.7). His home is two stories with an underground one phase primary running along the back, and an underground secondary and service drop. Measurements taken in the dining room ranged from 0.0 milligauss to 0.4 milligauss. In the family room, measurements showed readings varying from 0.2 milligauss to 1.0 milligauss. Measurements taken in the master bedroom had fields that varied between 0.1 milligauss to 0.2 milligauss. Data were also gathered in a study. In this room, measurements were taken for two hours rather than one hour. Here measurements ranged from 0.0 milligauss to 0.5 milligauss.

4.7 Measurements Around Electrical Appliances

Once data had been gathered concerning the general background magnetic fields that exist in the home environment, it was desirable to find out what our magnetic field exposure was from electrical appliances in the home.

Before taking measurements around electrical appliances, a methodology was prepared dictating how measurements were to be taken. The following procedure was used in our study in measuring the magnetic fields around appliances:

1. Initialize an EMDEXC to gather and store data vs. time at a sample rate of one measurement per second.
2. Select an electrical device, and set it away from any known magnetic field. This can be found by using the EMDEXC to locate an area of low magnetic fields.
3. Record specific information about the electrical device, including information such as name brand, model number, and electrical rating.
4. Place the EMDEXC directly next to the electrical device. Take measurements for ten seconds with the device turned off, then turn the device on and continue to take measurements for another ten seconds.
5. Repeat Step 3 again at distances of one foot away from the device, and also at three feet away from the device.
6. Define a typical exposure distance. This is the distance that the person is from the source of the magnetic field when normally operating it. For example, the typical exposure distance for an electric knife or electric hand drill is zero feet, because the user is in contact with the device when using it. On the other hand, the typical exposure distance for a television may be ten feet. The magnetic field measurement taken at this typical exposure distance is called the typical exposure value.
7. If the typical exposure distance is something other than zero, one, or three feet, collect data as in Step 3 at this typical exposure distance.
8. Download the EMDEXC to analyze the data.

This procedure was used in measuring approximately 300 electrical devices in 10 different homes. Each device was put into different groups based on the type of activity associated with the device. Within each group, the minimum, maximum, and average value for each device at the typical exposure distance was reported and is listed in Table 4.1. Also shown for each electrical device is the number of devices which were measured and the typical exposure distance. The last three columns in this table give the minimum, maximum, and average value of the $\mathrm{mG} /$ Watt rating. This value was found by taking either the name plate rating of the appliance or the actual measurement of the power that was consumed by that device, and dividing this value by the typical exposure value found at the typical exposure distance. This value can be used in making rough approximations for calculating the magnitude of magnetic fields that could be found around electrical devices of that type with only knowing the name plate rating.

Table 4.1. Magnetic field data for home electrical devices

NOTE 1: A PLUS SThbol (+) REANS tuat the typical exposute distance is the mande of the device.
NOTE 2: DLANK SPaCES indicate watt heter beadings here not taken.
NOTE 3: BLANX SPACES INDICATE VALUES WHICE COULD NOT aE dISTINGUISHED PROM background pradings.
NOIE 4: BLANK SPACES INDICATE VALUZS WHICH WERE EITAEE 2ERO OR NOT AVAILABLE BASED ON NOTES 2 OR 3.

Table 4.1. (Continued)

	no	TYP	MIN	Ave	max	MIN	ave	max	HiN	ave	max
	or	Exp	PWR	pWE	P6E	TYP	TYP	TYP	Exp	EXP	exp
	ItEMS	DIST	mate	mate	date	Exp	Exp	Exp	PER	PER	PER
						valuz	value	value	Watt	Watt	watt
17 M		FEET	Watt	Watt	Watt	cc	cc	-6	-6/w	-6/6	-6/w
	23:*	= = =	$x \pm$ \%	=s=	= $=2 \times$: $=\times \times= \pm$	x=3: $=$ \%	xx:x=	xx=:	: $= \pm$: $=$ \#	= $=$ =
NOTES:		1	2	2	2	3	3	3	4	4	4
 MEAL-RELATED	: = = =	: = =	\% $=$ =	: $=$ =	: $=$:7:x=		=	=	- = = = =	= = = =
BLENDER	4	0	375								
Cat opene				421	520	220.0	581.2	1000.0	0.423	1.472	2.667
	2	0				5600.0	5800.0	6000.0			
COFFEE GRINDER	2	0	130	130	130	350.0	420.0	490.0	2.692	3.231	3.769
COFFEE MAKER, DRIP	3	3	610	787	1000		0.3	0.3			0.001
COFFEE MAKER, PERC		3	1090	1145	1200		1.0	2.0		0.001	0.002
CROCK POT		3	150	150	150	0.4	0.5	1.2		0.001	0.005
DISHMASHER	2	3					0.4	8.0			
ESPRESSO MAKER	1	1	800	800	800	1.5	1.5	1.5	0.002	0.002	0.002
FAN, STOVE EXhaUSt	6	3				1.1	1.8	2.7			
FOOD PROCESSOR	6	0	60	331	500	102.0	365.0	900.0	0.314	1.246	1.829
FREE2RR, UPRICHT	6	3					1.2	2.4			
PRY PAN, ELEC BRL LID	1	1	1250	1250.	1250	18.5	18.5	18.5	0.015	0.015	0.015
PRYING PAN, ELECTEIC	3	1	1200	1233	1250	1.6	11.0	7.5	0.001	0.003	0.007
garbagz disposal	4	3				0.3	0.5	1.0			
ICE CREAM MAKER	2	3	114	126	137	3.1	3.9	4.7	0.023	0.032	0.042
KNIPE SHARPNER	1	1				53.0	53.0	53.0			
KNIEE, ELECTRIC	3	0	100	100	100	104.0	2434.7	3600.0	1.040	18.520	36.000
meat slicer	1	1	125	125	125	5.0	54.0	5.0	0.040	18.520 0.040	0.040
MICROLOVEN (MICRO)	1	3				3.0	3.0	3.0	0.040	0.040	0.040
MIXER, ELECTEIC HAND	4	0	90	102	120	120.0	1205.0	2700.0	1.333	11.667	27.000
MIXMASTER, COUNTERTOP	5	1	120	199	250	2.5	3.9	5.9	0.010	0.023	0.049
OVEN (BAKE)	5	3				0.5	1.1	1.4			
OVEN (BROILER)	2	,				1.1	2.5	3.9			
OVEN, MICEOLAVE	6	3				2.7	4.9	7.6			
POPCORN POPPER, AIE	2	3	1250	1250	1250	0.5	6.7	13.0		0.005	0.010
EANGE, ELECTRIC	7	1				4.9	42.0	110.0			
REFRIGERATOR	6	3					1.2	2.4			
TOASTEA	3	1	800	898	996	1.5	2.1	2.3	0.002	0.002	0.003
TOASTEE OVEN	4	1	1400	1467	1500	1.7	3.6	5.4	0.001	0.003	0.004
Natple iron	3	1	500	683	900	1.9	2.1	2.2	0.002	0.003	0.004
Haryer, POOD	3	3	75	148	250						
WOE, ELECTRIC	1	1	1500	1500	1500	1.6	1.6	1.6	0.001	0.001	0.001
holisi/yard-rclated											
AIR Cleaner/deodor	1	3				3.0	3.0	3.0			
AIR CONDITIONER, CEN	1	3				0.5	0.5	0.5			
AIR COND, CEN (STRT)	1	10									
AIR COND, HINDOH	3	3									
BLOWER, ELECTRIC Yard	1	*				1500.0	1500.0	1500.0			
CLIPPERS, ELECT HEDGE	2	0				380.0	1180.0	2000.0			
DEMUMIDIFER	5	3	280	520	636		2.0	7.0		0.004	0.011
FAN, CEILING	5	3					0.2	1.0		0.004	0.011
fan, purnace	2	10	186	186	186						
TAN, NON-OSCILIATING	7	3	25	81	155		2.7	10.5		0.057	0.188
FAN, OSCILLATING	8	3	27	40	76		2.6	9.0		0.056	0.181
GARAGE DOOR OPENER	3	3				0.4	3.9	9.0			0.181
MOWER, ELECTEIC LAWN	1	-	2237	2237	2237	15.0	15.0	15.0	0.007	0.007	0.007
vacuer cleaner, tank	4	3				1.0	3.4	7.6		0.007	0.007
vacuta cleaner, uprt	3	*					5.7	14.0			
vactuet pri noz, iank	3	*					4.9	14.0			
Vacturi, CEN CAAISTER	1	10									
vaculi, cordiess	4	0				1.9	2.8	3.6			
vacunt, Elec brook	3	*				1.9	2.1	2.3			
VAC, CEN PONER NO2ZLE	1	*				22.0	22.0	22.0			
Mater med heater	1	0				8.8	8.8	8.8			
MEED-EATER, ELEC LAWN	3	*	213	246	280	3.0	3.5	4.0	0.011	0.014	0.017

5. COMPUTER PROGRAMS

5.1 Introduction

Chapter 5 describes a set of computer programs that Iowa State University is using to analyze magnetic and electric fields created by utility power lines and equipment in Iowa. The first program is an EPRI package called the TLWorkstation (Transmission Line Workstation) [53] which performs a variety of calculations for power lines. EXPOCALC [54], a second EPRI program, performs contour mapping of fields around power lines. A third program, which was originally developed by Commonwealth Edison and rewritten by Iowa State University, performs magnetic and electric field profiles around utility power lines from a user friendly menu. The last program determines the proper phasing to minimize magnetic fields for a given structure.

5.2 EPRI TLWorkstation

The EPRI TLWorkstation consists of programs that perform foundation design, tower structure design, and environmental impact of transmission lines. TLWorkstation is a PC-based design tool used by over one hundred utilities and consultants in the design of all aspects of transmission lines. Two programs, ENVIRO and DYNAMP, were developed primarily for electric and magnetic field calculations.

ENVIRO mathematically models overhead transmission lines and theoretically calculates the resultant magnetic fields, electric fields, and audible noise profiles. It is capable of handling parallel transmission lines, a variety of conductor bundles and
configurations, up to twelve phases per circuit, and incorporates data for most conductor and shield wire types. This program is used mainly to experiment with how making various changes to structures affect the resultant magnetic fields. Because of its acceptance, it is useful as a check for other programs that are being developed to model electric and magnetic fields from transmission lines. Tables 5.1-5.3 lists sample inputs and outputs of magnetic and electric field profiles from ENVIRO for a 100% thermally loaded 345 kV line (Figure 5.1).

The ENVIRO program does not provide any graphical printout capabilities. A program named TLRead (Appendix B) was developed to read an output file from the TLWorkstation and produces an output file that can be easily imported into LOTUS-123, where profile plots of report quality can be obtained. Figure 5.2 shows an example of the type of graphs produced. Although the program created was specific for magnetic fields, it could easily be altered to produce output for electric fields or audible noise graphs.

The second EPRI program used in the study of magnetic and electric fields is the DYNAMP program. DYNAMP calculates the temperature of a conductor as a function of weather conditions and loading on a particular conductor. These data can be used in a sag-tension program to calculate the theoretical height of a conductor under which measurements are taken. Because of the better estimate of the actual conductor heights, theoretical values compare much closer to measured values. Figure 5.3 shows a sample comparing a theoretical versus a measured magnetic field for a three phase flat 345 kV line belonging to Iowa Power and Light Company. In general, the theoretical magnetic field profiles compare well with measured profiles of transmission lines because the transmission phases are operated

Table 5.1. TLWorkstation input data for flat 345 kV structure

Table 5.2. Electric field output for 345 kV flat structure

lateral DISTANCE (feet) (meters)		MAXIMUM FIELD (kV/m)	MINOR/MAJOR ELLIPSE AXES (ratio)	VERTICAL		SPACE POTENTIAI	
		$(\mathrm{kV} / \mathrm{m})$		$(\mathrm{kV} / \mathrm{m})$	(kV)		
-150.0	-45.72		. 387	. 002	. 386	. 016	. 386
-140.0	-42.67	. 438	. 002	. 438	. 018	438	
-130.0	-39.62	. 496	. 002	. 496	. 020	. 496	
-120.0	-36.58	. 561	. 003	. 561	. 022	. 561	
-110.0	-33.53	. 631	. 003	. 630	. 024	. 630	
-100.0	-30.48	. 703	. 004	. 703	. 024	. 703	
-90.0	-27.43	. 775	. 005	. 775	. 023	. 774	
-80.0	-24.38	. 838	. 007	. 838	. 019	. 837	
-70.0	-21.34	. 884	. 009	. 884	. 014	. 883	
-60.0	-18.29	. 901	. 013	. 901	. 012	. 899	
-50.0	-15.24	. 877	. 017	. 876	. 022	. 874	
-40.0	-12.19	. 802	. 024	. 801	. 039	. 799	
-30.0	-9.14	. 673	. 036	. 671	. 057	. 669	
-20.0	-6.10	. 497	. 062	. 493	. 072	. 491	
-10.0	-3.05	. 295	. 156	. 288	. 081	. 286	
. 0	. 00	. 150	. 564	. 150	. 085	. 149	
10.0	3.05	. 295	. 156	. 288	. 081	. 286	
20.0	6.10	. 497	. 062	. 493	. 072	. 491	
30.0	9.14	. 673	. 036	. 671	. 057	. 669	
40.0	12.19	. 802	. 024	. 801	. 039	. 799	
50.0	15.24	. 877	. 017	. 876	. 022	. 874	
60.0	18.29	. 901	. 013	. 901	. 012	. 899	
70.0	21.34	. 884	. 009	. 884	. 014	. 883	
80.0	24.38	. 838	. 007	. 838	. 019	. 837	
90.0	27.43	. 775	. 005	. 775	. 023	. 774	
100.0	30.48	. 703	. 004	. 703	. 024	. 703	
110.0	33.53	. 631	. 003	. 630	. 024	. 630	
120.0	36.58	. 561	. 003	. 561	. 022	. 561	
130.0	39.62	. 496	. 002	. 496	. 020	. 496	
140.0	42.67	. 438	. 002	. 438	. 018	. 438	
150.0	45.72	. 387	. 002	. 386	. 016	. 386	

Table 5.3. Magnetic field output for 345 kV flat structure

**						
*						
TIC FIELD PROFILE						
* at 3.28 feet above grour						

<---------- AC MAGNETIC FIELD ------------>						
	ERAL	MAJOR	MINOR/	VERTICAL	HORI ZONT	L RMS
DIST	ANCE	AXIS	MAJOR	COMP	COMP	RESULTANT
(feet)	(meters)	(mG)	(Ratio)	(mG)	(mG)	(mG)
-150.0	-45.72	20.59	. 063	9.13	18.50	20.63
-140.0	-42.67	22.78	. 069	8.76	21.08	22.83
-130.0	-39.62	25.25	. 075	8.05	24.01	25.33
-120.0	-36.58	28.06	. 083	6.88	27.30	28.16
-110.0	-33.53	31.23	. 091	5.26	30.91	31.35
-100.0	-30.48	34.77	. 101	3.79	34.74	34.94
-90.0	-27.43	38.69	. 112	5.12	38.59	38.93
-80.0	-24.38	42.95	. 124	9.87	42.13	43.27
-70.0	-21.34	47.47	. 137	16.74	44.90	47.92
-60.0	-18.29	52.12	. 152	25.27	46.27	52.72
-50.0	-15.24	56.70	. 167	35.01	45.59	57.48
-40.0	-12.19	60.95	. 182	45.23	42.34	61.95
-30.0	-9.14	64.61	. 196	54.89	36.36	65.85
-20.0	-6.10	67.44	. 208	62.86	28.18	68.89
-10.0	-3.05	69.24	. 216	68.09	19.55	70.84
. 0	. 00	69.91	. 219	69.91	15.33	71.57
10.0	3.05	69.39	. 217	68.06	20.23	71.00
20.0	6.10	67.73	. 210	62.79	29.07	69.20
30.0	9.14	65.02	. 198	54.79	37.31	66.29
40.0	12.19	61.46	. 185	45.09	43.29	62.51
50.0	15.24	57.30	. 170	34.83	46.53	58.12
60.0	18.29	52.78	. 156	25.06	47.18	53.42
70.0	21.34	48.17	. 142	16.52	45.76	48.66
80.0	24.38	43.67	. 129	9.71	42.95	44.04
90.0	27.43	39.42	. 117	5.17	39.36	39.69
100.0	30.48	35.51	.107	4.25	35.45	35.71
110.0	33.53	31.96	. 098	5.82	31.58	32.11
120.0	36.58	28.78	. 090	7.44	27.92	28.89
130.0	39.62	25.95	. 083	8.59	24.59	26.04
140.0	42.67	23.46	. 077	9.30	21.61	23.53
150.0	45.72	21.25	. 072	9.66	18.99	21.31

Figure 5.1. Flat 345 kV structure

MAGNETIC FIELDS - 345 kV LINE

Figure 5.2. LOTUS-123 plot made with aid of TLRead

Flat 345 kV Line

Calculated Measured

Figure 5.3. Comparison of theoretical versus measured magnẹtic fields
nearly balanced. As the phases become unbalanced or the number of lines increases, the theoretical values tend to not correlate as well with measured values for a variety of reasons. Examples include: proper determination of the phasing of multiple lines, estimation of the unbalances involved, and knowledge of where return currents flow.

5.3 EPRI EXPOCALC

EXPOCALC was the first readily available micro-computer program to calculate theoretical human exposure to electric and magnetic fields from transmission lines. First released by EPRI, in 1986, it has been used by more than one hundred utilities.

Input into the program includes the line conductor spacing and design parameters, line voltage, current, and objects in the vicinity that may shield the electric fields. Additional input is an activity systems model that simulates the type of human activity under the transmission line that is to be modeled. The output of the program consists of both magnetic and electric field contour plots, as well as time histograms of human exposure levels. These data can be used to estimate, or quantify, human exposure. The main use of this program is to evaluate abatement or reduction strategies in dealing with magnetic and electric field exposure. It is also used to analyze the electric field shielding effects of objects.

The following is an example illustrating the types of calculations that EXPOCALC performs. The example model includes an area (Figure 5.4) with a flat construction 345 kV line running across it. There are three transmission towers: one on the left side, one in the center, and the third on the right side of the area.

Figure 5.4. EXPOCALC example area

The area is sub-divided into two areas: a corn field on the left, and a pasture with trees on the right. Input data, similar to that specified for the TLWorkstation, are used to model the transmission line. Additional input includes any objects such as trees or buildings that are to be modeled. Also defined is a human activity model used in calculating the exposure to magnetic and electric fields. An internal database within the program contains all types of activities and associated times for each type of activity. In this example, the activities chosen were all those associated with the annual production of corn (i.e., planting, harvesting, etc.). Using the user's input data and the program's internal database, magnetic and electric field profiles and contour results are produced. Outputs include tables and contour maps (Tables 5.4-5.7, Figures 5.4-5.6).

5.4 Commonwealth Edison Program

This set of programs was originally written by Ken Steele, of Commonwealth Edison. In its original version, different programs determined magnetic and electric field profiles resulting from overhead and underground electric lines. One program computed induced voltages from utility lines on items that may be found underneath them such as vehicles or buildings. The Iowa State University package is a single menu-driven program that retains all the original capabilities. One enhancement is the ability to vary one or all of a group of parameters to determine the effect of varying that parameter.

One of the major changes made within the program was the implementation of a menu system to control the program. The main menu (Figure 5.7) consists of the following six parts:

Table 5.4. EXPOCALC example electric field output

Blectric Field Proilies - d / a Sensor Height - 3.28 ft .												
Distance froa C (ft)	35.0	$\begin{aligned} & \text { ound } \\ & (\mathrm{ft}) \end{aligned}$ 40.0	45.0	50.0	55.0	60.0	85.0	0.0	75.0	80.1	85.0	20.0
0	3.347	2.420	1.782	1.331	1.006	0.968	0.591	0.457	0.355	0.276	0.214	0.165
10	3.170	2.448	1.913	1.511	1.205	0.970	0.788	0.645	0.532	0.442	0.370	0.312
20	3.631	2.945	2.405	1.978	1.637	1.384	1.144	0.966	0.821	0.701	0.603	0.521
30	4.546	3.637	2.963	2.448	2.042	1.719	1.459	1.246	1.071	0.926	0.805	0.703
40	4.644	3.803	3.155	2.647	2.241	1.913	1.844	1.421	1.235	1.079	0.948	0.835
50	3.931	3.389	2.924	2.531	2.198	1.917	1.678	1.474	1.300	1.151	1.022	0.910
80	2.999	2.732	$2.46 ?$	2.216	1.885	1.779	1.590	1.425	1.278	1.148	1.034	0.932
10	2.199	2.101	1.976	1.833	1.689	1.562	1.431	1.309	1.198	1.092	0.997	0.911
80	1.607	1.591	1.548	1.485	1.410	1.329	1.245	1.161	1.080	1.002	0.329	0.860
90	1.187	1.208	1.206	1,186	1.153	1.110	1.061	1.008	0.953	0.898	0.844	0.792
100	0.893	0.327	0.945	0.948	0.738	0.920	0.894	0.863	0.823	0.792	0.754	0.715
110	0.685	0.722	0.747	0.761	0.765	0.761	0.751	0.735	0.715	0.692	0.606	0.640
120	0.535	0.570	0.597	0.616	0.627	0.631	0.630	0.624	0.614	0.601	0.585	0.567
130	0.424	0.457	0.483	0.503	0.517	0.526	0.530	0.531	0.527	0.520	0.511	0.500
140	0.342	0.371	0.395	0.415	0.430	0.441	0.448	0.45'	0.453	0.451	0.447	0.441
150	0.280	0.305	0.327	0.345	0.360	0.372	0.381	0.387	0.390	0.392	0.391	0.388
160	0.232	0.254	0.273	0.290	0.304	0.316	0.326	0.333	0.338	0.341	0.342	0.342
170	0.194	0.213	0.230	0.246	0.259	0.270	0.280	0.287	0.293	0.297	0.300	0.301
180	0.164	0.181	0.198	0.210	0.222	0.233	0.242	0.250	0.256	0.261	0.264	$0.26 \hat{0}^{\circ}$
190	0.140	0.154	0.168	0.180	0.192	0.202	0.210	0.218	0.224	0.229	0.833	0.236
200	0.120	0.133	0.145	0.156	0.166	0.176	0.184	0.191	0.197	0.202	0.207	0.210
210	0.104	0.116	0.125	0.136	0.145	0.154	0.161	0.168	0.174	0.173	0.184	0.187
220	0.091	0.101	0.111	0.120	0.128	0.135	0.142	0.149	0.154	0.159	0.184	0.168
230	0.080	0.089	0.097	0.105	0.113	0.120	0.126	0.132	0.138	0.142	0.147	0.150
240	0.070	0.079	0.086	0.093	0.100	0.107	0.113	0.118	0.123	0.128	0.132	0.135
250	0.063	0.070	0.077	0.083	0.089	0.095	0.101	0.106	0.110	0.115	0.119	0.122
260	0.056	0.062	0.068	0.074	0.080	0.085	0.090	0.095	0.099	0.103	0.107	0.111

Table 5.5. EXPOCALC example electric field exposure summary

Exposure Index Tabulation: farming

$\begin{gathered} \text { Exposure Bin } \\ (\mathrm{kV} / \mathrm{a}) \end{gathered}$	Time (h)	Tine Weighted Avg Eeq	Exposure Index (kV/m) h	$\begin{aligned} & \operatorname{Exp} \\ & (\%) \end{aligned}$	Cum Exp (\%)	Area (acres)	Area Weighted Avg E
$0.000<0.050$:	3.96	0.035	0.137	2.8	2.8	0.00	0.035
$0.050<0.100$:	3.24	0.072	0.232	4.7	7.5	0.44	0.084
$0.100<0.250$:	3.94	0.167	0.657	13.3	20.9	1.50	0.163
$0.250<0.500:$	2.95	0.350	1.033	21.0	41.8	0.99	0.364
$0.500<1.000$:	2.55	0.725	1.849	37.6	79.4	0.98	0.731
$1.000<2.000:$	0.87	1.167	1.013	20.6	100.0	0.96	1.415
$2.000<6.000:$	0.00	0.000	0.000	0.0	100.0	0.87	3.073
$6.000<10.000:$	0.00	0.000	0.000	0.0	100.0	0.00	0.000
	17.50	0.281	4.921			5.74	0.937

The max electric field is $4.729 \mathrm{kV} / \mathrm{m}$ at 36 ft from C / L at min ht.
The min electric fieid is $0.067 \mathrm{kV} / \mathrm{m}$ at $(255,3$).
The max exposure index point is 0.010 (hV/min at (25. 2is).
Note: Tige weighted avg Eeq includes effect of activity
factor, whereas the area weighted avg E does not.

Table 5.6. EXPOCALC example magnetic field output

Magnetic flux Density Profiles - ag Sensor Height - 3.28 ft .												
Distance from CL (ft)	35.0	$\begin{gathered} \text { round } \mathrm{C} \\ 1 \mathrm{ft} \\ 40.0 \end{gathered}$	earanc 45.0	$\begin{gathered} c e(s)--t o \\ 50.0 \end{gathered}$	- Center 55.0	$\begin{array}{r} \text { ar of } \mathrm{Bu} \\ 60.0 \end{array}$	le or 85.0	70.0	35.0	80.0	85.0	0.0
0	308.6	263.01	225.04	19.02	,	146.08				89.55		
10	312.92	263.22	223.72	191.83	165.82	144.41	126.65	111.80	99.28	88.67	19.60	71.81
20	311.19	257.69	217.05	185.29	159.91	139.28	122.28	108.11	96.19	85.07	77.42	97
30	288.55	238.85	201.44	172.39	149.27	130.50	115.03	102.11	91.20	81.91	73.93	67.03
40	245.57	207.29	177.49	153.76	134.52	118.65	105.4]	94.22	84.68	78.49	69.39	63.20
50	195.97	170.73	149.79	132.29	117.55	105.05	94.36	85.15	77.17	70.22	64.12	58.75
80	152.35	136.98	123.27	111.19	100.56	91.21	82.98	75.71	69.88	63.57	04.12 58.49	53.75
70	118.62	109.35	100.61	92.51	85.08	78.31	72.15	66.58	61.53	56.97	52.83	19.07
80	93.67	87.97	82.35	76.93	71.78	66.93	62.40	58.13	54.30	50.71	47.39	44.34
90	75.30	71.67	67.98	64.31	80.71	57.24	53.92	50.75	47.78	44.98	42.35	34.90
100	61.61	53.21	50.72	54.18	51.64	49.14	45.69	44.32	42.04	44.88 39.86	47.19	35.82
110	51.23	49.59	47.80	46.07	44.84	42.41	40.59	38.80	37.05	35.35	33.72	3.82 32.15
120	43.21	42.05	40.83	39.53	38.20	36.83	35.46	34.10	32.75	31.12	30.13	38.15 28.87
130	36.91	36.08	35.18	34.23	33.23	32.20	31.16	30.11	29.05	28.01	28.98	25.87
140	31.88	31.25	30.59	29.88	29.12	28.34	27.53	26.71	25.88	25.05	28.98 24.23	23.97 23.42
150	27.80	27.34	26.83	26.28	25.70	25.09	24.46	23.81	23.16	22.43	24.23 21.83	23.42 21.17
160	24.45	24.10	23.70	23.28	22.82	22.34	21.85	21.33	20.81	20.27	21.83 19.73	21
170	21.67	21.39	21.09	20.75	20.39	20.01	19.61	19.20	18.77	18.34	17.90	17.15 17.45
180	19.34	13.18	18.87	18.60	18.32	18.01	17.69	17.35	17.01	16.65	15.29	5.
190	17.36	17.18	16.99	16.79	16.54	16.29	16.03	15.75	15.47	15.17	14.87	14.53
200	15.67	15.53	15.37	15.13	15.00	14.80	14.58	14.35	14.12	12.87	13.62	14.55 13.36
210	14.22	14.10	13.97	13.82	13.66	13.49	13.31	13.13	12.93	12.72	4, 2.51	12.35 12.30
220	12.95	12.88	12.75	12.63	12.50	12.35	12.20	12.05	11.88	11.71	1.51	11.34
230	11.85	11.77	11.68	11.58	11.47	11.35	11.22	11.09	10.95	10.80	10.65	1.34 0.49
240	10.89	10.82	10.74	10.65	10.50	10.46	10.35	10.24	10.12	10.00	9.87	9.73
250	10.03	9.98	9.91	9.84	9.76	9.67	9.58	9.48	10.18 9.38	19.07 9.27	9.81 9.15	9.15 8.05
260	9.28	9.23	9.17	9.11	9.04	8.97	8.89	8.81	8.12	8.82	8.53	2.05 8.43

Table 5.7. EXPOCALC example magnetic field exposure summary

Exposure Index Tabulation: farming							
$\underset{(m G)}{\text { Exposure Bin }}$	Time (h)	Time Weighted Avg B	Exposure Index (mG)h	$\begin{aligned} & \operatorname{Exp} \\ & (\%) \end{aligned}$	Cus Exp (\%)	$\begin{gathered} \text { Area } \\ \text { (acres) } \end{gathered}$	Area Weighted Avg B
$5.00<20.00:$	5.43	13.95	75.80	6.8	6.8	1.78	13.95
20.00 < 50.00 :	4.94	31.75	156.93	14.0	20.8	1.62	31.75
$50.00<100.00$:	3.18	72.08	229.15	20.5	41.3	1.04	72.08
$100.00<150.00$:	1.67	121.39	202.30	18.1	59.3	0.55	121.39
150.00<200.00:	0.85	173.07	147.84	13.2	72.6	0.28	173.07
$200.00<250.00$:	0.62	222.67	137.20	12.3	84.8	0.20	222.67
$250.00<300.00$:	0.62	275.79	169.93	15.2	100.0	0.20	275.79
	17.31	64.66	1119.14			5.67	64.66

The max magnetic flux density is 314.12 © at 14 ft from C / L at win ht .
The min magnetic flux density is 9.54 mG at $(5,5)$.
The max exposure index point is 2.183 (mG)h at $(255,235)$.

Figure 5.5. EXPOCALC example electric field contour plot

Figure 5.6. EXPOCALC example magnetic field contour plot

MAIN MENU

Choose one of the following options:

SETUP

1) Reinitialize Program

INPUT
2) Enter New Data Set
3) Recall Existing Data set

CHANGE DATA

4) Change One or More Existing Parameters
5) Vary a Single Parameter Over a Range

EXECUTE
6) Compute Electric Field Quantities
7) Computer Magnetic Field Quantities
8) Compute Both Electric and Magnetic Field Quantities OUTPUT
9) Display Results
10) Print Results
11) Save Results to a File
12) Save Existing Data Set

TERMINATE
13) Quit
$=>$?
Figure 5.7. Revised Commonwealth Edison main menu

SETUP - This is where the program variables are initialized. This is to enable the running of a completely different case without restarting the program.

INPUT - The user has the option of inputting a new data set or recalling a previous data set to be used for calculations. An added feature is that an input file may be edited in the case of a mistake without retyping all the input data.

CHANGE DATA - This option allows the user to change a parameter or vary a parameter over a given range. An example of this would be the case of a user wanting to determine the magnetic field profiles for a given structure with its original conductor heights, varied in one foot increments to a height of ten feet higher than the original. This option can be used in the case of magnetic field abatement investigations.

EXECUTE - Execute allows the user to run either the magnetic field calculations, electric field calculations, induced voltage calculations, or all of these calculations in a single run.

OUTPUT - Output from the program can be viewed on the screen, sent to the printer, or sent to an output file. Existing data sets can also be saved from here. Graphical output is contingent on the arrival of a package of graphic routines at the time of this document.

TERMINATE - Used to leave the program.

This program duplicates many of the same types of calculations done by the TLWorkstation program ENVIRO. The main advantage of this program over the TLWorkstation program is the ease and speed of varying a single parameter. This allows for faster, easier, and more in-depth studies of a modified structure and associated magnetic fields. Tables $5.8-5.13$ show a magnetic field study where a given 69 kV structure (Figure 5.8) is raised by two foot increments over a ten foot range. In Figure 5.9 is a LOTUS-123 plot of the six cases.

5.5 Minimization Program

The minimization program determines the proper phasing to minimize the magnetic fields for a given single three phase circuit or a double three phase circuit line. For a double three phase circuit line, the voltages of the line may be the same voltage, or they may be different. The program's calculations are based on the original Commonwealth Edison program magnetic field calculations written by Ken Steele discussed previously. The minimization program was written in FORTRAN so it could easily be used with other subroutines that were required for its implementation. Another reason for the conversion to FORTRAN was that the program could then be run on the Sun Workstation where the program would run much quicker, because it was found to be a computationally extensive program.

Table 5.8. 69 kV line with 32 feet to bottom conductor

PHASE CONDUCTOR SUMMARY

STATIC WIRE SUMMARY

Magnetic field flux densities

HORIZONTAL PROFILE AT 3.28 feet

$\begin{gathered} \quad X \\ \text { COORD } \\ \text { feet } \end{gathered}$	MAXIMLM/MINIMUM FLUX DENSITIES OF ELLIPSE milligauss		HORI ZONTAL COMPONENT milligauss	vERTICAL COMPONENT milligauss
-150.00	1.486	0.121	1.345	0.643
-140.00	1.694	0.149	1.513	0.777
-130.00	1.948	0.183	1.710	0.950
- 120.00	2.262	0.227	1.944	1.178
-110.00	2.655	0.284	2.221	1.482
-100.00	3.156	0.360	2.548	1.897
-90.00	3.807	0.461	2.930	2.474
-80.00	4.668	0.600	3.361	3.295
-70.00	5.835	0.796	3.811	4.490
-60.00	7.451	1.075	4.186	6.257
-50.00	9.737	$\frac{1}{2} .484$	4.242	8.889
-40.00	13.018 17.680	$\frac{2}{2.081}$	3.499	12.711
-20.00	23.848	3.954	10.612	17.653 21.720
-10.00	30.335	4.783	24.477	18.547
0.00	33.603	4.751	33.572	4.967
10.00	30.875	3.888	26.216	16.766
20.00	24.517	2.926	11.945	21.610
30.00 40.00	18.231 13.416	2.206	2.900	18.134
50.00	10.015	1.350	2.976 4.074	13.192 9.248
60.00	7.645	1.093	4.157	6.508
70.00	5.974	0.902	3.834	+.669
80.00	4.770	0.758	3.400	3.430
90.00 100.00	3.882	0.646	2.971	2.581
100.00 110.00	3. 214	0.558 0.487	2.587	1.987
120.00	2.297	- 0.430	1.974	1.362
130.00	1.977	0.383	1.736	1.020
140.00	1.718	0.344	1.535	0.844
120.00	1.306	0.311	1.364	0.709

Table 5.9. 69 kV line with 34 feet to bottom conductor

PHASE CONDUCTOR SUMMARY

STATIC WIRE SUMMARY

MAGNETIC FIELD FLUX DENSITIES

HORIZONTAL PROFILE AT 3.28 feet				
X	MAXIMUM/MINIMUM		HORIZONTAL	VERTICAL
COORD	FLUX DE	IES	COMPONENT	COMPONENT
feet	milil		milligauss	milligauss
-150.00	1.478	0.120	1.322	
-140.00	1.684	0.147	1.382	0.673
-130.00	1.934	0.181	1.671	0.990
-120.00	2.243	0.225	1.892	1.225
-110.00	2.629	0.281	2.151	1.337
-100.00	3.119	0.355	2.452	1.960
-90.00	3.753	0.453	2.795	2.545
-80.00	4.588	0.588	3.168	3.370
-70.00	5.709	0.774	3.531	4.553
-60.00	7.247	1.039	3.775	6.273
-50.00	9.393	1.418	3.653	8.768
-30.00	16.574	1.960	2.786	12.250
-20.00	21.874	3.565	10.694	16.466
-10.00	27.200	4.232	22.489	15.875
0.00	29.790	4.217	29.765	+.389
10.00	27.632	3.543	23.915	14.289
20.00	22.436	2.741	11.930	19.198
30.00	17.057	2.104	3.471	16.832
40.00	12.770	1.645	2.282	12.671
50.00	9.650	1.313	3.467	9.101
60.00	7.431	1.069	3.731	6.515
70.00	5.842	0.886	3.543	4.729
80.00	4.686	0.746	3.200	3.503
99.00	3.827	0.638	2.832	2.652
100.00	3.176	0.552	2.488	2.050
110.00	2.673	0.483	2.183	1.616
120.00	2.278	0.427	1.921	1. 297
130.00	1.962	0.381	1.696	1.058
140.00	1.707	0.342	1.504	0.876
150.00	1.497	0.309	1.341	0.735

Table 5.10. 69 kV line with 36 feet to bottom conductor

PHASE CONDUCTOR SUMMARY

STATIC WIRE SLMMARY

Magnetic field flux densities HORIZONTAL PROFILE AT 3.28 feet

$\stackrel{X}{\text { COORD }}$ feet	MAXIMUM/ FLUX DEN OF ELL millig	NIMLM TIES SE SS	HORI ZONTAL COMPONENT milligauss	vERTICAL COMPONENT milligauss	
-150.00	1.470	0.119	1.297	0.701	
-140.00	1.673	0.146	1.451	0.844	
-130.00	1.919	0.180	1.630	1.029	
- 120.00	2.223	0.222	1.839	1. 269	
-110.00	2.602	0.277	2.079	1.588	
-100.00	3.081	0.349	2.354	2.018	
-80.00	3.698 4.506	0.445	2.659 2.976	2.608 3.431	
-70.00	5.582	0.753	3.256	3. 431 4.596	
-60.00	7.043	1.003	3. 382	6.259	
-50.00	9.053	1.355	3.112	8.608	
- 40.00	11.822	$\frac{1}{2} .846$	2.225	11.757	
-30.00	15.543 20.110	2.494	10.615	15.321	
-10.00	24.516	3.226	10.632 20.688	17.371 13.685	
0.00	26.594	3.768	26.574	3.907	
10.00	24.866	3.236	21.867	12.273	
20.00 30.00	20.583 15.967	2.566	11.759	17.087	
40.00	12.149	1.585	1.790	12.121	
50.00	9.292	1.275	2.915	8.915	
60.00	7.217	1.044	3.325	6.490	
70.00	5.709	0.870	3.259	4.768	
80.00	4.600	0.735	3.002	3.562	
90.00 100.00	3.769	0.630	2.692	2.713	
110.00	2.645	0. 0.779	2.381	2.106	
120.00	2.257	$0 .+24$	1. 866	1.363	
130.00	1.947	0.378	1.655	1.094	
140.00	1.695	0.340	1.472	0.906	
150.00	1.489	0.308	1.316	0.761	
DESSITY	$\begin{gathered} X-\operatorname{COORD} \\ 0.00 \end{gathered}$	$\begin{aligned} & M A X I \\ & 26.5 \end{aligned}$	$\begin{aligned} & \mathrm{LM} / \mathrm{MINIMLM} \\ & 3.768 \end{aligned}$	$\begin{aligned} & \text { HORIZONTAL } \\ & 26.3 i 4 \end{aligned}$	$\begin{aligned} & \text { VERTICAL } \\ & 3.907 \end{aligned}$

Table 5.11. 69 kV line with 38 feet to bottom conductor

PHASE CONDLCTOR SLMMARY

STATIC WIRE SLMMARY

MAGNETIC FIELD FLUX DENSITIES

$\begin{aligned} & \text { X } \\ & \text { COORD } \\ & \text { feet } \end{aligned}$	MAXIMLM/MINIMUM FLUX DENSITIES OF ELLIPSE milligauss		HORI ZONTAL COMPONENT milligauss	VERTICAL COMPONENT milligaus
-150.00	1.461	0.118	1.272	0.728
-140.00	1.661	0.145	1.419	0.875
-130.00	1.904	0.178	1.589	1.065
-120.00	2.203	0.220	1.784	1.310
-110.00	2.574	0.273	2.006	1.635
-100.00	3.042	0.344	2.255	2.070
-90.00	3.641	0.436	2.523	2.661
-80.00	4.422	0.561	2.786	3.479
-70.00	5.454	0.732	2.989	4.621
-60.00	6.840	0.967	3.008	6.219
-50.00	8.720	1.293	2.621	8.416
-40.00	11.260	1.738	1.838	11.244
-30.00	14.584	2.309	3.943	14.230
-20.00	18.530	2.931	10.465	15.571
-10.00	22.202	3.381	19.062	11.875
0.00	23.889	3.388	23.872	3.501
10.00	22.488	2.964	20.044	10.619
20.00	18.931	2.402	11.482	15.242
30.00	14.957	1.909	4.416	
40.00	11.556	1.526	1.537	11.555
50.00	8.941	1.238	2.422	8.696
60.00	7.004	1.020	2.942	6.437
70.00	5.575	0.853	2.983	4.786
80.00	4.512	0.723	2.806	3.607
90.00	3.711	0.621	2.552	2.764
100.00	3.095	0.540	2.286	2.156
110.00	2.616	0.474	2.035	1.710
120.00	2.236	0.420	1.810	1.379
130.00	1.931	0.375	1.612	1.128
140.00 150.00	1.684 1.479	0.338 0.306	1.440 1.290	0.936 0.786
150.00	1.479	0.306	1.290	0.786

Table 5.12. 69 kV line with 40 feet to bottom conductor

STATIC WIRE SUMMARY

Magnetic field flux densities
HORIZONTAL PROFILE AT 3.28 feet

$\stackrel{X}{\mathrm{X}} \mathrm{CORD}$ feet	MAXIMUM/MI NIMUM FLUX DENSITIES OF ELLIPSE milligauss		HORIZONTAL COMPONENT milligauss	VERTICAL COMPONENT milligauss
-150.00	1.452	0.117	1.246	0.754
- 140.00	1.649	0.143	1.386	0.905
-130.00 -120.00	1.888	0.176	1.546	1.098
- 110.00	2.545	0.217 0.269	1.728 1.933	1.349 1.677
-100.00	3.001	0.338	2.156	2.115
-90.00	3.584	0.428	2.388	2.706
-80.00	4.337	0.548	2.599	3.514
-70.00	5.325	0.710	2.730	4.627
-60.00	6.639 8.394	0.932	2.656	6.155
-40.00	10.723	1.638	2.1848	10.199
-30.00	13.694	2.141	4.229	13.200
-20.00	17.115	2.672	10.222	13.984
-10.00	20.195	3.048	17.596	10.369
0.00 10.00	21.578 20.431	3.062	21.564	3.156
20.00	17.456	2.750 2.250	18.420	13.630
30.00	14.023	1.816	1.174	13.320
40.00	10.991	1.468	1.518	10.985
50.00	8.600	1.201	1.992	-8.451
60.00	6.792	0.995	2.584	6.360
70.00	5.440	0.836	2.718	4. 786
80.00	4.424	0.711	2.614	3.639
100.00	3.054	0.534	2.413	2.807 2.200
110.00	2.586	0.469	1.960	1.751
120.00	2.214	0.416	1.753	1.415
130.00	1.915	0.373	1.569	1.160
140.00 150.00	1.671 $1 .+70$	0.336	1.406	0.963
150.00	1.470	0.304	1.264	0.810

$\begin{array}{ccccccc}\text { FLUX DENSITY PEAK: X-COORD } \\ & 0.00 & 21.578 & 3.062 & 21.564 & 3.156\end{array}$

Table 5.13. 69 kV line with 42 feet to bottom conductor

PHASE CONDUCTOR SUMMARY

STATIC WIRE SUMMARY

X	Y	SPAN	GMR	COND	CURRENT	PHASE	INDUCED VOLTAGE
COORD	COORD			RESIST		ANGLE	PHASE TO PHASE
feet	feet	feet	feet	Ohms/Mile	amps	degrees	volts degrees
0.00	56.80	200	0.015600	6.750	2.80	50.2	$4.180 \quad 234.0$

MAGNETIC FIELD FLUX DENSITIES
HORIZONTAL PROFILE AT 3.28 feet

$\begin{array}{r} \mathrm{x} \\ \text { COORD } \\ \text { feet } \end{array}$	MAXIMLM/MINIMLM FLUX DENSITIES OF ELLIPSE milligauss		HORI ZONTAL COMPONENT milligauss	VERTICAL COMPONENT milligauss	
-150.00	1.442	0.116	1.219	0.779	
-140.00	1.637	0.142	1.352	0.933	
-130.00	1.872	0.174	1.503	1.130	
-120.00	2.160	0.214	1.672	1.384	
-110.00	2.515	0.265	1.858	1.716	
-100.00 -90.00	2.960	0.332	2.056	2.155	
-90.00	3.525 4.251	0.419 0.534	2.253 2.416	2.743 3.538	
-70.00	5.196	0.689	2.481	4.617	
-60.00	6.439	0.898	2.327	6.071	
-50.00	8.078	1.178	1.803	7.962	
-40.00	10.211	1.544	1.609	10.201	
-30.00 -20.00	12.870 15.843	1.988	4.458	12.235	
-20.00	15.843 18.444	2.444 2.762	9.928 16.275	12.586 9.107	
0.00	19.588	2.781	19.577	2.860	
10.00	18.641	2.508	16.972	8.107	
20.00	16.135	2.109	10.746	12.219	
30.00	13.159	1.727	4.984	12.301	
40.00	10.454	1.412	1.656	10.418	
50.00	8.268	1.163	1.631	8.188	
60.00	6.584	0.970	2.252	6.262	
70.00	5.306	0.818	2.464	4.770	
80.00	+.335	0.699	2,42i	3.659	
90.00	3.590	0.604	2.275	2.841	
100.00	3.011	0.527	2.082	$\underline{2.238}$	
110.00	$\frac{2}{2} .555$	0.454	1.88 -	1.788	
120.00	2.192	0.413	1.696	1. 149	
130.00	1.898	0.370	1.525	1.190	
150.00	1.659 1.460	-. 0.303	$1.37 \frac{2}{7}$	0.990	
DENSITY	$\begin{array}{r} X-C O O R \\ 0.00 \end{array}$	$\begin{aligned} & \text { MAXI } \\ & 19.5 \end{aligned}$	$\begin{aligned} & \mathrm{LM} / \mathrm{MINIMCM} \\ & 2.781 \end{aligned}$	$\begin{aligned} & \text { HORI ZONTAL } \\ & 19.577 \end{aligned}$	$\begin{gathered} \text { VERTICAL } \\ 2.860 \end{gathered}$

Figure 5.8. Vertical 69 kV structure

69 kV Magnetic Fields

Varying Height

Figure 5.9. Summary graph of six case run by modified Commonwealth Edison program

The program was designed to minimize the magnetic fields associated with power lines by proper conductor positioning in the construction of new lines, or by retro-fitting existing lines. Input into the program consists of the same information required by the Commonwealth Edison program, along with a few other inputs. One of the additional inputs into the program is dependent on the number of phase conductors (three or six). If a six conductor case is to be run, it must be input whether or not the conductors can be swapped from three phase circuit to three phase circuit, or if they must remain in their respective three phase circuit. Conductor positions are input in order, with the first three positions corresponding to the first three phase circuit, and if a second three phase circuit is studied, with the next three positions corresponding to it. Conductors for the first three phase circuit are labeled as a1, b1, c1, and if a second three phase circuit exists, its conductors are labeled as $\mathrm{a} 2, \mathrm{~b} 2$, c 2 . Once all the data have been input, the program can be run and output can be obtained. Output for the program is a file that contains the summary of all the cases run, with the magnetic fields calculated at 150 feet away from the conductor, and the maximum magnetic field. Also computed is a file for each combination of conductor positioning containing magnetic field magnitudes at every five feet for the line being studied from 150 on one side of the line to 150 feet on the other side (-150 to 150). Listed below are three examples of the use of the program.

The first example is a single 34.5 kV three phase line shown in Figure 5.10. This case will consist of six possible combinations of phase conductor positioning. They are a1b1c1, a1c1b1, b1a1c1, b1c1a1, c1a1b1, and c1b1a1, where the first conductor listed is always in the phase conductor position input first, etc. When

PHASE CONDUCTOR SEMMARI

Figure 5.10. Single 34.5 kV three phase line
running the program, all six possible combinations are calculated and compared to find the case of minimum magnetic fields. As the results show in Table 5.14, this is not an interesting case. In the case of three conductors, the phasing of the line does not matter, and all cases result in the same magnetic field profile.

The second and more interesting example is a double three-phase circuit line, with one circuit operated at 161 kV , and the second circuit operated at 69 kV (Figure 5.11). Here, it can be seen that the three 69 kV phases must be kept at the bottom of the structure, and the 161 kV phases must be kept at the top of the structure, or spacing violations will occur. In this case, thirty-six possible phase conductor positionings exist. The 161 kV circuit conductor positions were input first (a1, b1, c1) with the 69 kV circuit positions input second (a2, b2, c2), so the 161 kV phases are listed first (the top of the circuit), with the 69 kV phases listed second (the bottom of the circuit). Example of possible circuit labels are a1b1c1a2b2c2 and c1b1a1b2a2c2. This case gives a little more interesting results, with the output for the thirty-six different cases shown in Table 5.15.

The third example is a double three-phase circuit line (Figure 5.12), with both circuits being operated at 161 kV . Again, one 161 kV line is designated as being circuit one ($\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1$), and the second circuit as being circuit two ($\mathrm{a} 2, \mathrm{~b} 2, \mathrm{c} 2$). The difference between this case and the previous case is that these 161 kV lines can be swapped from one circuit to the other, since the spacing is the same for both circuits, which allows for seven hundred twenty different combinations. This case allows for much more diverse output which is summarized in Table 5.16.

This program shows the magnetic field strengths found near a multi-circuit line are functions of both line currents (magnitude and angle) and phase arrange-
ment. The result of the program is the phase arrangement that would produce the minimum magnetic fields directly under the line for a given set of currents.

Table 5.14. Minimization output for 34.5 kV three phase line

RANB	$\underset{i}{\text { CASE }}$	PHASE ARRANGEKENT	$-150{ }_{\text {HACNEPIC PIBLD }}^{\text {KAX }} 150$		
1	1	albic	0.61	10.56	0.63
$?$	2	alcibi	9.81	10.68	0.63
$\stackrel{3}{3}$	3	blalcl	0.61	10.66	9.63
1	4	blclal	0.61	10.66	0.69
5	5	cla!bl	0.51	10.66	i).63
6	¢	clbial	0.61	$10.6 \hat{0}$	0.63

Table 5.15. Minimization output for double three phase line, 161 kV and 69 kV

$\xrightarrow{\text { RANB CASE }}$| PRASB |
| :--- |

1	6	albiclcabeaz	1.88	7.92	1.79
2	20	blclalazc2bs	1.88	? 292	1.19
3	27	clalbibzarca	1.88	7.92	1.79
,	10	alclblbac2a2	1.77	9.62	2.01
5	11	blalclc2a2bs	1.77	9.62	2.01
6	31	clblalazb2c2	1.77	9.62	2.01
I	I	albiclasb2c?	3.06	18.10	3.18
8	26	blcialbacaa?	3.05	18.10	3.18
9	2 C	clalblça 26	3.06	18.10	3.18
10	8	alcibladcabz	3.13	13.19	3.18
11	15	blalclb2a2ca	3.13	18.19	1.18
12	36	c!blalcab2a?	3.13	18.19	3.18
13	9	alciblbiazca	3.25	20.83	3.46
14	18	blalcicabas2	3.25	20.33	3.19
15	32	clblala2c2b2	3.25	20.82	3.4
16	4	alblclbactas	3.52	21.15	3.48
17	23	blclalcaaba	3.52	21.16	3.48
18	25	claiblarb2c?	3.52	21.15	3.18
19	5	alblclc 2 a 2 b 2	3.36	21.57	3.55
20	19	blc!ala 2 b2ca	3.36	21.57	3.55
21	28	clalbibacaad	3.36	21.57	3.55
22	11	alc!blcaarba	3.80	21.60	2.19
23	13	bialclazb2ca	3.80	21.60	?. 19
24	34	clblalb2c2a?	3.80	21.50	3.19
25	12	alclolcabzaz	3.57	21.82	3.05
26	14	blalclaccab?	3.5 ?	31.82	3.55
27	33	ciblalb2a2c?	3.57	21.32	3.55
28	3	alblclbazaca	4.12	24.41	3.83
30	24	biclaic 2b2a?	1.12	24.11	3.93
30	26	clalblaccebz	4.12	24.41	2.82
31	2	alblcla 2 c 2 b 2	3.55	24.45	4.02
32	21	blclalbas?ca	3.55	24.15	4.02
33	30	clalbicab2a	3.55	24.15	1.02
31	$?$	alclbla2b"c?	3.93	26.14	4.31
35	16	blalcibzc2a?	3.92	26.44	4.31
? 6	35	clblalcaabb2	3.93	26.44	4.31

Phase conductor slmmary

$\begin{gathered} \text { PHASE } \\ \text { CONDUCTOR } \\ \text { no. } \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \text { COORD } \\ \text { feet } \end{gathered}$	$\underset{\substack{\text { YoRD } \\ \text { feet }}}{ }$	CURRENT amps	PHASE ANGLE degrees
1	8.1	80.0	650	-11
2	-8.1	74.5	650	228.5
3	9.6	69.0	650	108.5
4	-3.5	64.0	510	0.0
5	3.5	59.0	510	210.0
6	-3.5	54.0	510	120.0

STATIC WIRE SCMMARY

Figure 5.11. Double three phase line, 161 kV and 69 kV

PHASE COADLCTOR SUMMARY
$\left.\begin{array}{ccccc}\begin{array}{c}\text { PHASE } \\ \text { COADLCTOR }\end{array} & \begin{array}{c}\text { COORD } \\ \text { no }\end{array} & \text { Ceet } & \text { CORD } & \text { feet }\end{array}\right)$

STATIC WIRE SUMMARY

Y COORD feet	COORD feet	SPAN	GMR	COND
-10.0	105.7	300	0.03750	feet
-10.117				
-10.0	105.7	300	0.03750	0.117

Figure 5.12. Double 161 kV three phase line

Table 5.16. Minimization output for double 161 kV three phase line

Table 5．16．（Continued）

$\underline{8188}$	$\underset{j}{95 E}$	PYAEE AKRANGEMENT				515	$\frac{1}{i}$	5ns： RERASUEMENT	$-350 \text { MASNEM: MA: }$		
$\because:$	829	attis1biclas	8.91	168.22	9.14	4	146	32ticlase2t	10.05	111． 31	50
3%	532	catlatclalba	3.14	108．29	3.9	10°	：$\hat{6}$	běaticlas：	19， 85	14.3	4．2\％
）${ }^{0}$	89	albectasithi	4.32	103.83	8.20	5	\％ 2	ça？tiolios	10．06	\％1，	5
14	72	alh2e ${ }^{\text {blaicl }}$	3.33	108．9？	3.43	\％	全		－ 5.4		\％
1？	322	6le2albasel	9.32	108.82	8.37	30	0	a $2 ⿰ ㇒ ⿻ 土 一$ balalt	3.86	116.6	6.6
： 35	272		8.23	108.83	9.92	30°	号：	b3： 3 16！c？as	5.42	$\underline{15.54}$	¢ i_{6}
$1{ }^{7}$	3 364		9.35	108.83	3.3	\％	\％	¢5xattaso	3.85	115，${ }^{\text {d }}$	E12
139	368	clattealcabl	8.23	108.95	9.23	30	5！	こatcleiast	： 13	－ 5	为哏
139	4	aiclozasio	？${ }^{2}$	109．84	3.60	29	594	cticeabla	？． 3 E	1．5． 36	\％
140	9，95	aibec？azble		108.34	5.23	\％6	\％		－？？	115	－
14	141	blalc ${ }^{2} b^{2}$ ec	5.28	108．84	3.80	$3{ }^{3}$	$1:$	dclasabeca	1．？${ }^{\text {a }}$	115．${ }^{\text {c }}$	12．
14	234	blc3azb？cla！	3.65	108.84	5.28	20？	354	ciaibstic2a？	：2．93	115．：？	？ 3 ix
143	276	clblaccabas	5.22	108.84	3.66	208	14	aibic？${ }^{\text {cla }}$ abl	13.79	115．06	14．97
141	305	clazb2casibl	3.66	108.84	5.28	209	2319	bicastalbect	13.98	115.80	16．07
145	115	82c1blalb2ca	9.38	110.20	8.12	215	304	cla？bebicial	13.79	115.86	11.07
148	165	a2cablclalbe	8.12	110.20	9.38	$2!1$	$19 \hat{8}$	$32 c^{2} \mathrm{~b}$ ！ 62 cla ！	14.12	115.84	14.80
119	488	bzalclblcat？	9.38	110.20	8.12	21%	569	beadcle ${ }^{\text {albl }}$	11.12	115.94	11.88
148	565	baaclalble？	8.12	110.20	9.28	313	901	c3balazblc！	14.42	115.24	16．85
19	625	conialcls？	9.38	110.20	8.12	211	101	ala3blh3clas	14.64	116.96	14．68
$i 50$	697	c2baaiblcls 2	8.12	110.20	9.38	215	179	blaldic2alba	14.54	115．${ }_{\text {da }}$	4.78
151	93	albac2cibias	11.36	［11．41	14.91	216	315	cibialablce	14.61	115.56	14.56
： 52	229	blcaatalcloz	11.36	111．11	14.91	$2!1$	28	alclblbecas	14.77	115.15	$14.1{ }^{\text {a }}$
153	303	clabteblalc？	14.36	111．4］	11.91	319	135	blalcla 2asb？	14．7？	116.35	14．4＊
：54	1	alblcla3b2c？	4.35	111．1？	3.82	$9!9$	365	clclalab2ca	14.71	119．85	14．15
155	118	blclalbecas？	1.95	111．17	3.92	220	118	a cclblbacas	11.59	119．12	14．6\％
155	345	clalble2atb2	4.35	111．4？	3.82	$\stackrel{32}{21}$	492	bes lclc ${ }^{2} 22 b 1$	14.50	116.42	\％ 4.98
is？	178	a 2 2b2alcibl	3.82	111．4？	4.95	22%	628	c2blalazicl	14.59	116.4	19．79
［18	573	b2asc2blalc！	3.92	111．4？	4.95	293	¢	alblclesbias	11.81	110， 1\％5	14．4．
159	720	cabza2clblal	2.82	111．1？	4.96	224	146	olclalazabs	11．8：	110．020	1， 10
00	456	32b2c2clbla	14．1？	111．52	14．31	？ 2	20	：！1blbazc？	14.81	111．19	14．4
181	596	b2e2a3alcibl	14.12	111.52	14.81	326	8 ！	31biclazbles	1.68	117．2？	4． 96
1 ${ }^{\text {b }}$	893	2a 2 b 2bialci	14.43	［11．52	14．81	29	29 \％	blegalb2cla？	4.68	11： 2 ？	4
163	20	alble2clbad	11.57	111．5？	11．72	229	293	clasbicalbz	1.68	117.8	4．i5
154	152	blclatalcebz	14.57	111．5？	14.72	229	422	saclbialcoiol	4.75	11？．2？	4.38
165	259	clalbzblazca	14.57	111.57	11.12	236	500	¢23： 2 bla 2 c ！	4，76	117．2？	1.68
156	408	asblc $2 \mathrm{cloza!}$	14.86	111.85	11.51	291	S 40	c2blazclbal	1.76	117．3？	4.58
167	542	bicla ${ }^{\text {alc } 2 b 1}$	14.66	111.85	14．04	232	83	albicle2blat	14.84	117.31	11.50
168	820	c3albeblatci	14.65	111.85	14.64	232	219	blcialatelbe	14.64	110.1	\＄4．65
169	392	azbiclalcab2	10.23	112.11	9．3？	331	29%	cls2blbasla？	14.64	117．31	11.68
170	447	azb2clbialca	3．3？	112.11	10.23	235	396	a2blcledbral	14.91	117.35	14.35
$!1 \mathrm{i}$	529	b2clalblazca	10.38	112.11	9.87	29 ¢	532	biclala 2 ctbi	14.91	117．35	14．36
102	879	b2c2alcibias	9.37	112.11	10.23	397	006	－2a1bib2a2c！	14.91	117.35	14.38
173	602	c 3 ablclbis？	10.23	112.11	9．3？	约2	105	azblceclalb？	11.15	117.12	14.0
114	679	caatblalclb2	9.37	112.11	10.32	239	155	92b2c2clalbl	14.18	11？．4？	14.52
19	478	a2cebiblcial	14．4？	112.21	14.7 ？	210	511	beclazalblca	14.15	117．12	14.07
176	575	b2a2cacisibl	14.47	112.21	14.77	241	595	b2c2a2alblcl	11.18	117.12	11.59
$17 ?$	115	c2b2a2alolc！	$14.4 \hat{i}$	112．21	11.77	248	618	c2albeblclas	14.15	117.42	11.67
198	115	s1c2b2bicia	11.69	112.39	14.59	241	694	clazbablclat	14.18	117.42	14.52
179	189	blazcaclalb？	14.69	112.39	14.59	211	150	a 2 b 2 c 1 c 2 b 1 sl	11.72	117.55	14．5？
180	325	clbzazalble？	14.69	112.39	14.59	245	582	b 2 c 2 a 1a2c1b1	14.12	117.55	14.57
181	124	accibablcas	14.66	113.16	14.61	246	683	cas？bibaticl	11.72	117.55	14.59
182	502	b2alcaclazbl	14.66	113.16	14.64	$24 ?$	477	a 2 c2biblalcl	13.68	118.10	14.03
183	638	c2blatalbacl	14.68	113.16	14.61	248	576	b2arciclbla！	13.68	118.40	14.02
184	138	aiclbabic 2×2	14.85	113.24	14.12	243	115	c2b2atalclbl	13.68	118.10	14.03
185	139	blalcacla ${ }^{\text {a }}$ ？	11.36	113.24	11.12	250	115	alcobiblazcl	14.18	118.82	14.12
185	211	clblasabac？	11.86	113.24	14.12	251	190	blazcacibeal	11.18	118.82	14.12
187	26	alcibla $2 \times 2 b^{2}$	5.26	113.39	4.22	25？	326	clbatialczbl	14.18	118.39	14.12
：88	123	blalclbaazc？	5.25	113.39	4.22	263	46 ？	a ${ }^{\text {c }}$ 2tibealcl	13.58	119.15	13.73
189	270	ciblalcab2as	5.26	113.39	4.22	254	570	bazcle2blal	13.58	119.96	13.13
190	451	a 2 2c2albicl	4.22	113.39	5.26	255	102	cabzalazc1bl	13.58	119.96	13.73
191	598	b2czazbicial	1.22	113．39	5.26	256	102	a 102 blbas 2 cl	11.07	120.14	13.79
132	695	casabsclalbl	4.22	113.39	5.26	259	189	blazclcosbat	14.0 ？	120.14	13.19
197	19	albaclbla？c？	9.29	［11．31	10.05	256	316	clb2alascabi	11.07	120.14	13.79
194	218	blc2alclb2at	9.29	114．31	10.05	259	123	azclbablalct	14.20	120.75	14.15
195	296	cla2bisic 2 b 2	9.20	111．31	10.05	260°	501	baslcaclbia？	14，20	120.75	14.66

Table 5.16. (Continued)

	CASB	PHASE	HAGNETIC PIELD				CASB	PBASE	YAGHETIC PIBLD		
RANE	1	ARRANGEHENT	-150	H2	150	RANI	1	ARRANGEKEN:	-150	$H A I$	150
261	537	c2blazalc!b2	14.20	120.75	14.16	326	12	a $1 a^{2}$ c2b2cib!	16.71	135.62	13.75
262	116	siclblalcibz	1.69	120.98	6.09	327	162	blclbacia 2 a	12. 75	135.52	16.11
263	415	abiclalblca	5.09	120.98	4.89	328	209	biblazcasicl	16.71	135.52	13.75
264	187	balciblazca	1.69	120.98	5.09	329	262	clalc ${ }^{\text {a }}$ ab2b!	13.75	135.52	19.11
265	$57 ?$	b2c2ablelas	5.09	120.98	1.69	330	360	clcab2asblal	16.71	135.58	12.75
266	526	ciblalcibas	4.69	120.98	5.09	331	89	alazbiclble?	15,55	135.8?	13.26
267	68.	c?a2ticlaib?	6.99	120.98	4.69	332	211	blb2caalclas	16.55	132.87	12,26
368	3 3?	3 iclb2bla ${ }^{\text {a }}$?	4.36	121.05	14.58	332	351	c! 1 ? 2bolab	15.55	135.37	13. 26
269	10	blalc $2 \mathrm{c} 10 \mathrm{Ca}^{3}$	14.66	121.08	14.52	334	114	atclaicatel	2, $3 \cdot 5$	135.8 ?	16.56
370	272	clolataloeba	11.56	121.05	14.52	335	184	bsalbla 2 2ci	13.20	125.37	16.55
$3 ? 1$	417	atcibibialcs	14.07	121.35	14.15	336	636	c2blclbasa!	2.26	125.8?	16.55
272	491	baaicle? ${ }^{\text {das }}$	14.07	121.35	14.15	$32 ?$	25	albatablcica	!2.0!	136.12	19.75
$27 ?$	$52 ?$	citiajacilba	16.07	121.95	14.15	398	237	blcibiclalat	13.01	136.12	16.75
371	27	aiclolbiado3	11.58	123.02	14.18	379	307	clasc 2 alblbe	13.01	136.13	10.75
275	128	bisicleabas	14.52	122.92	14.18	340	370	azalclbace	10.75	136.12	12.01
276	258	clblalada ${ }^{\text {a }}$ d	14.59	122.02	14.18	341	510	b2blalcasacl	16.75	138.13	13.01 !
219	5	aiblcle $2 \times 2 \mathrm{~b}$ 2	14.03	122.96	13.68	342	658	c2c1bia 2 as	16.75	136.13	13.61
378	145	blelalazbaca	14.03	122.96	13.68	313	56	alazclblizbz	10.14	136.58	12.32
279	244	clalblb2c2a	14.03	122.96	13,68	311	193	blbalala ${ }^{\text {a }}$ a	16.11	136.58	$\underline{12.68}$
280	81	albiclc 2atbl	14.12	123.40	14.18	345	344	cla $2 \mathrm{blalb2a}$	16.14	135.32	12.62
281	220	blczala ${ }^{\text {a }}$ ac	14.12	123.10	14.18	346	134	a2b2alblc? ${ }^{\text {a }}$	12.62	136.58	15.14
282	298	clazblbicial	14.12	123.40	14.18	347	586	b2c3blclazal	12.52	135.52	16.14
283	395	s2blc!c2alb2	14.48	124.77	14.20	348	086	c2asclalbebi	12.62	136.52	16.11
284	$53!$	biclalsable?	14.46	124.7?	11.20	319	59	alazcic2blbz	19.13	137.43	19.14
285	605	casibibaclas	14.16	124.71	14.20	350	195	blb2ala ${ }^{\text {cla }}$	19.13	137.13	19.11
386	449	a 2 b 2 c 1 c 2 a 1 bl	11.52	125.10	14.66	351	317	clc2blb2als	19.13	117.43	19.14
287	581	ozczalabicl	14.52	125.10	14.66	$35 ?$	60	alasclcab2bl	19.32	137.58	19,34
288	684	caazbib2alal	11.52	125.10	14.66	352	196	b1b2s!a 2 c 2 c !	19.32	137.58	19.34
289	35	alcla $2 \mathrm{c} 2 \mathrm{blb3}$	12.76	127.79	16.11	334	348	clc2blbasal	19.22	137.58	19.81
290	135	blaibis?clc3	12.76	127. 13	16.14	355	9	1161s2b2c1c2	13.84	137.99	1?.04
291	287	clblo?b2alas	12.78	127.79	16.14	356	161	blclbeceala	:3, 34	127.99	11.94
292	377	2albac2blc!	13.14	127.79	12.36	357	281	clalc ${ }^{2} a^{2} \mathrm{~b} 1 \mathrm{bz}$	17.34	127.39	17.04
293	528	beblc $2 a 2 c l a!$	16.14	127.79	12.76	358	384	adalcabacill	17.04	13?.99	13.34
294	665	c2cla2balbl	15.14	127.79	12.75	359	521	b2blazcaalci	17.04	137.99	17.81
295	29	alcia2c2b2b!	12.7?	128.45	16.18	360	672	cacib2azblal	17.04	137.89	13.84
296	65	1 a 2 b 2 c 2 blc	1.18	128.15	12.17	351	69	alazczclolbs	19.14	138.85	19.61
29 ?	136	b1alb2a2c2cl	13.77	128.45	16.18	362	205	blbas2alcic?	19.14	138.85	19.61
298	216	b1b2c $2 \mathrm{~s} 2 \mathrm{c} / \mathrm{al}$	16.18	128.15	12.9?	363	359	cicabablalaz	19.44	138.85	19.61
299	288	clbic 262 az	12.79	128.45	15.18	361	6 ?	ala 2 c 2 blclb	16.43	138.89	13.18
300	353	clazazb2albl	10.18	128.15	12.79	365	207	blbasaclsics	16.43	138.80	12.48
301	58	ala 2 c 1 b 2 c 2 bl	16.43	133.58	12.93	366	355	cle2b2alblaz	16.43	138.89	13.18
302	86	alb2a 2 blc 2 cl	12.93	133.58	16.43	367	368	azalclblcab?	16.45	138.89	12.59
303	198	blbasicas 2 !	16.43	133.58	12.93	368	388	a $2 \mathrm{blalb2c} 2 \mathrm{cl}$	13.18	138.89	16.43
304	238	clc2b2cla?a	12.33	123.58	16.13	369	43	a 2 balbiclc?	12.59	138.89	15.15
305	308	c!a2c 28152 i i	12.93	133.58	16.43	370	505	biblalciac?	16.45	138.89	12.69
306	346	clc2blarbal	[6. 43	133.58	12.93	371	540	b2clble 2 a 2 al	12.18	138.89	16.19
307	374	s2aibiblc 2 c 1	19.14	133.91	19.12	372	585	bacebiclala?	12.59	138.89	16.15
308	526	b2blc2clasal	19.14	133.91	19.13	373	610	c 2alclazbat	13.18	138.39	16.43
309	662	c2c1a2alb2bl	19.14	133.91	19.13	371	656	c2ciblalbat	16.15	139.89	12.69
310	62	ala 2 b 2 blc 2 cl	19.34	134.08	19.32	375	085	c 2asclalbib?	12.69	138.89	16.45
311	214	blbac2clazal	19.34	134.08	19.32	376	111	alcearclolbe	13.23	138.99	16.67
312	350	clc 2 a 2 s 1 b b 1	19.14	131.08	19.32	377	181	blazbalcic?	13.23	138.99	15.83
313	373	a 2 abibicic?	10.38	135.21	18.54	378	333	cib2cabialat	13.23	138.99	16.63
314	525	boblcaclala?	19.38	135.21	19.51	319	365	a 2 ablc 2 b2cl	16.68	138.99	13.23
315	661	c2clazalbib2	19.38	135.21	19.54	380	514	b2blcla2c2a!	10.63	138.99	12.23
316	61	31a\%b2blcle?	19,5?	135.35	19.73	381	654	ciclalb2a2bl	16.63	138.99	[3. 33
317	213	bitacaclalaz	19.5?	135.35	19.73	382	20	a $1 a^{2} a^{2} \mathrm{c} 1 \mathrm{~b} 2 \mathrm{bl}$	19.59	199.07	19.81
318	349	clcsazalblbz	19.57	135.35	13.93	383	206	blbasalc?c!	19.83	$139.1{ }^{7}$	13.81
319	375	asabiclolca	18.60	135.14	13.23	384	358	clcen2bis2al	19.63	129.05	19.81
320	113	a 2 clalc $2 b$! ${ }^{\text {a }}$	13.23	135.44	18.50	385	171	32alclc3bib2	19.51	139.38	
321	483	b2albla2cla?	13.33	135.44	18.56	386	507	bablalazelca	19.54	129.38	19.38
322	523	-2blc2alcla	16.50	135.14	13.23	387	659	cacibibatas	19.54	139.38	19.38
323	635	c2diclb2als2	13.23	135.44	16.50	388	312	a 2 alclc 2 b 2 b -	19.75	139.56	19.57
324	653	caclazblalb2	16.50	133.14	13.23	389	508	b2blalasc? ${ }^{\text {cl }}$	19.73	119.50	19.5?
325	10	11b1at2cacl	13.75	! 35.52	[5.91	390	660	c2ciblb2asa!	10.? ${ }^{\text {a }}$	133.50	19.5?

Table 5.16. (Continued)

	Case	PHASB	MAGNETIC PIELO			RARE CASE		PHASE	MASHETIC FIELD		
RARS	!	hrangehenf	-150	M $x^{\text {x }}$	150			ARRANGEMEHT	-150	M ${ }^{\text {K }}$	150
391	54	11a2blcab2cl	16.70	139.86	13.26	$(56$	338		10.98	151.31	11.2%
392	112	alc 2 aciclbabl	13.26	139.86	16.70	159	109	alcazzblc1b2	11.0 ?	151.36	
393	182	blazbzalczicl	13.26	139.86	16.70	158	183	blazacialca	11.07	154.36	. 36
394	302	blb2ciazcaal	16.70	139.86	13.26	459	31	clibacasiblaz	11.01	154.36	
395	23	clb2c2blazal	13.26	139.86	16.70	160	290	azblalceibicl	1.1 .25	154.36	
396	342	clçalb2abol	16.70	139.86	13.26	161	538	b2ctblazial	11.36	154.39	
309	181		18.86	140.91	19.33	462	612	C2alclba ${ }^{\text {ab }}$	11.38	564.36	
3988		diblazalicic	19.86	140.94	19.83	463	110	$32 \mathrm{lablc} \mathrm{c}^{\text {b }}$?	10.46	54. ${ }^{4}$	
400		actbobisias	19.86	140.94	$19.8{ }^{2}$	164	435	a 26381 clolc d	16.19	5. ${ }^{8}$	4
101	¢8\%	b2blatalc? ${ }^{\text {a }}$	20.05	111.14	20.03	$16 \hat{}$	$3{ }^{3}$	b2cotlalcla	di.19	5.5	6
102	\%i9	cactbrblazal	20.05	141.14	29.63	469	332	chblciahias	$16.4{ }^{\circ}$	54.68	
10.	37		16.76	141.15	13.56	468	687	c2aciblaibe	10.19	54.58	-
404	38%	a $261 \mathrm{lab2cle} 2$	13.56	141.15	16.76	469		alblazalbace	11.25	159.29	
105	517	b2blazclalc?	16.76	14.15	13.56	170	158	bleibealcáa	11.25	15i. 29	1.07
106	539	b2clblcasaz	13.50	141.15	$1{ }^{1} .78$	47.	259	clalc2blazoz	11.25	51.29	
107	699	c a ${ }^{\text {a }}$ cisabib2	13.56	141.15	16.76	172	462	s2cas 16 ćc 1 b 1	11.07	¢i.29	1. 25
408	667	c2elbealbla	16.76	141.15	13.56	173	563	brazbiczalc!	11.0?	57.29	11.25
409	361	a $2 \mathrm{alb1b2c} 2 \mathrm{cl}$	19.61	142.90	19.44	174	714	cabiclazbla	11.0?	57.29	11.25
110	516	beblcle $2 a^{2} \mathrm{a}$	19.61	142.90	19.41	175	385	3201alclb2ce	11.25	60.25	
411	652	caclelazabd	19.61	142.90	19.19	176	159	a 2 cadiblelt 2	11.14	60.28	. 35
412	52	ala 261 b 2 c 2 C !	19.81	143.22	19.63	179	536	b2ciblalcea?		60.26	
113	204	blbaclezaza)	19.81	143.22	19.63	478	561	braziciaicz	11.14	60.26	1.35
414	340	clczalazbobl	19.81	143.22	19.63	173	607	casalclazb2	11.35	180.26	1.14
115	363	s2alblbecle2	19.83	144.19	19.86	480	109	c2beclaiblaz	11.14	180.26	11.35
416	515	bablcicasas	19.83	144.19	19.86	181	15	slb1b2azclca	17.03	165.80	18.83
417	681	ciclalazblb2	19.83	144.19	19.86	182	167	blcle 2 atala?	17.03	165.80	16.83
418	51	alazbibecle?	20.03	144.19	20.05	483	251	clala 2 c2blb	17.03	65.89	6.83
419	209	blbaclczalat	20.03	141.13	20.05	184	378	a2albaczeib1	16.83	65.86	? M_{6}
420	339	clcasia 2 bib2	20.03	141.49	20.05	185	527	bablczazaic!	16.83	65.80	\% 1.93
121	34	alclazbze2bl	10.28	145.28	10,05	486	666	-2clazb2blal	16.83	165.80	8.03
422	89	a 1 basaczblc!	10.05	145.23	10.28	487	16	aibibazcacl	17.00	166.66	5. 93
123	138	blalb2c2asc	10.28	145.28	10.05	488	56	ala 2 becactb1	16.83	166.66	12.0i
424	240	blcabzazcla	10.05	145.28	10.28	189	188		17.00	166.65	5. 8^{3}
125	236	clole ${ }^{\text {a } 2 \text { aral }}$	10.23	145.28	10.0.t	490	215	blbáczasalcl	16.83	165.56	17.60
125	311	clarcabablbi	10.05	145.28	10.28	(9)	252	clala 2 czabbl	17.00	166.55	15.39
429	361	s2alblcibace	18.9?	145.45	14.6?	192	354	clcza2b2blal	16.83	168.66	17.00
128	459	$32 \mathrm{c} 2 \mathrm{lc} 1 \mathrm{blb2}$	13.67	145.45	16.9?	193	5	a $1320162 b l c a$	16.89	109.48	6.34
429	512	b2blclaicas?	16.97	145.15	13.6?	191	197	blbaalcziclas	16.89	169.48	16.94
130	569	b?azbialcled	13.67	145.15	18,97	195	345	clceblatalbz	16.83	169.18	
131	619	caclabblaba	15.97	14.45	13.57	496	128	s2cicialbet	16.94	169.48	16.14
132	111	e2beciblala	13.67	14.15	16.97	497	494	b2alarblc2cl	16.94	169.48	16. ${ }^{\text {x }}$ 3
133	19	11a2blcibact	17.04	146, 11	13.11	498	616	cebibiclazal	18.94	169.18	16.89
134	200	blbeclalcaas	17.04	166.11	13.91	199	48	alcle $2 a 2 b 2 b 1$	17.10	170.25	1in. y^{19}
135	33?	clcaalblazaz	17.04	146.11	13.81	500	11	$3182 c 2 b 2 b 1 c 1$	16.89	170.25	17.10
437	${ }^{666}$	a 2 c aicicibat	13.? ${ }^{1}$	146.11	17.04	501	130	b1ala 2 bac 2 c 1	17.10	170.35	18.89
137	560	basablalcacl	13.71	148.11	17.04	502	2 io	blb2azcaclal	16.89	170.25	
138	1.12	c2beciblazal	13.31	[46.11	17.04	503	282	ciblb2cata	19.10	170.25	\% 0
129	32	alcla 2 blc 2 b 2	10.11	148.85	10.21	504	359	cle? ${ }^{\text {b }}$ a2aibl	16.99	170.25	17.10
40	133	blaib2claced	10.41	148.65	10.21	505	15	a 1 b 2 b 1 azclc 2	16.92	170.30	16. 31
41	284	clble 2 albad	10.41	148.65	10.21	505	227	ble?cibzalat	16.92	170.10	16.91
42	437	a 2 bzalc 2 blcl	10.21	188.65	10.41	507	293	claralceblba	16.92	70.76	
443	588	b2ceblazclal	10.21	118.65	10.41	508	376	${ }^{2} 2 \mathrm{alb} 2 \mathrm{c} 1 \mathrm{c} 2 \mathrm{bl}$	16.91	170.70	16.32
144	889	clazelozalbi	10.21	18.55	10.11	509	524	b2blczalazc1	16.91	175. 10	16.42
415	8 ?	albzarclblce	10.0 ?	151.30	10.39	510	664	c $2 \mathrm{clazblb2al}$	16.91	170.30	16.92
46	335	blczb2alclar					54	als 262 c 1 c 2 b 1	16.31	1?1,40	15.90
11 ?	309	clazc2blatb2	10.07	151.30	10.39	512	76	31 b 2blacac 2 c	16.30	171.40	6.91
448	118	a $2 \mathrm{c} 1 \mathrm{alb2} 22 \mathrm{bl}$	10.39		10.07	513	212	b 1 b 2 c 2 ala 2 c	16.91	11.40	16.30
19	486	b2alblczascl	10.39	151.30	10.07	514	228	ble?clbasial	16.90	171.40	16.31
450	534	c2tlelazbal	10.39	151.30	10.07	515	296	clasaicabibl	16.90	171.40	[6.21
451	12	albiascabac	11.23	151.31	10.36	$\$ 16$	352	cle 2 a 2 blbas	16.91	191.40	16.00
452	114	a!c?azb2c1bl	10.96	151.31	11.23	517	369	salc!babicz	17.15	$171.6 \hat{0}$	10.96
483	169	blcibzazcas	11.23	151.31	10.96	518	127	a 2 cle 2 alblb2	16.96	171.66	17.16
45	185	blazbaczalcl	10.96	151.31	11.23	519	193	balazblcled	15.96	11.66	
$!55$	20.		11.23	151.31	10.36	520	509	beblalceclad	17.15	11.66	16.36

Table 5.16. (Continued)

RANS	CASB	PGASE ARRANGEKENT	$-1500_{\text {KAGNETIC PIBLD }} 150$			RANB	$\underset{i}{\text { CASE }}$	PHASE ARRAGGEMENT	Magnetic field		
521	615	c2bib2clalat	16.96	171.86	17.15	586	188	blazb2c2clal	14.39	176.58	17.23
522	859	cac!blatalba	17.15	171.66	10.95	587	380	clblozarcas	17.23	118.58	14.39
523	15	alcicearbibe	17.13	172.51	17.18	588	335	clbzc2a2albl	14.39	176.58	17.23
521	129	blalazb2clc?	17.13	172.51	17.18	589	31	aiclazblb2c?	14.07	117.15	16.36
525	281	clbib2c2ala	17.13	172.51	$1 \% 18$	590	131	blalb2c!c ata	14.07	177.16	10.98
526	383	a $2 \mathrm{~s} 1 \mathrm{2b} 2 \mathrm{blc}$	17.18	172.51	17.13	591	28.	=lblc 2alazbe	4.7?	17?. 18	18.96
529	523	beblazcaclat	17.18	172.51	17,13	592	173	a caclbialb	15.95	177.48	14.0?
528	501	c 2 c 162 a 2 albl	17.18	172.51	17.13	593	559	olazalc?oic!	16.36	179.46	14. ${ }^{\text {a }}$
539	55	3latciblbe?	16.82	172.51	16.96	594	708	C2b2blazclal	15.96	10.7 .16	11.07
530	194	blb2alcle ${ }^{\text {a }} 2$	16.82	1? 3.61	15.93	596	362		$1 ? .14$	178.20	17.71
59	543	cle2blalaza	16.32	172.51	16.9%	598	439	sibeblalcia?	1?.04	173.20	17.11
532	170	atcecialbeb!	13.93	172.61	15.82	59.9	511	Qtbelalaza?	17.14	178.20	i?.64
53%	S54	beacalble 201	16.93	172.61	16.82	598	591	bitaciblala?	17.04	178.20	1.1 .1
534	? 06	cabzblclazal	16.93	172.61	16.82	599	850	caclalblbat	17.14	178.20	17.14
535	68	ala2cablbac!	16.81	179.35	17.11	600	675	E2atalclbib?	19.04	178.20	17.14
336	106	alc?clasbabl	17.11	173.35	16.34	601	? 8	aibeblcaa 2 cl	16.55	178.62	13.45
597	$1{ }^{1} 2$	blacalbicecl	17.11	179.35	16.84	602	89	ajbas2cle2bl	13.45	178.62	16.58
538	208	biblazcleza!	16.84	179.35	17.11	$60 \hat{}$	226	bic2ciab2al	15.55	178.68	13.45
596	324	cibable2asal	17.11	173.35	16.84	604	236	bic2b2alazci	12.15	178.62	15.55
540	356	clcer2alarbl	16.81	173.35	17.11	605	292	cis $2 \mathrm{alb2c} 201$	15.55	178.62	10.45
541	13	alcla2b2blc?	13.97	173.59	18.83	606	310	clazc2blb2a!	13.15	178.62	16.55
542	137	blalb2c2clas	13.97	173.59	18.83	609	111	a 2 clalbzblct	13.14	178.88	18.82
543	285	clblc2a2alb2	13.97	173.59	16.83	608	129	a 2 clcedalb2	16.62	178.88	13.74
544	431	a 2 c 1 c 2 b 2 s 1 b	16.83	173.59	13.97	609	485	balbic?clas	13.14	118.88	16.82
545	497	beala ${ }^{\text {coblcl }}$	16.83	173.59	13.97	810	495	b2alarclibica	16.62	178.88	13.74
516	518	c2blb2a2clal	16.83	173.59	13.97	611	633	c2blclazalbt	13.71	178.88	16.82
547	365	-2alblcaciba	17.08	173.61	17.18	612	643	crbibesicla?	16.62	178.38	13.74
548	397	32blbalcle2	17.18	173.61	17.08	613	50	ala 2 blclc 3 b 2	17.17	199.96	± 7.05
519	513	babiclasic?	17.08	173.61	if. 18	614	199	blbicialazcá	17.17	179.06	17.03
550	543	bacle2blalaz	17.18	173.61	17.08	615	338	cleaslblbas?	17.17	13.136	17.09
551	$5!5$	c3ala2clblba	17.18	173.61	17.08	816	140	s2b2blalcacl	17,03	179.06	17.1?
558	653	c2clalbiblaz	17.08	173.61	17.18	617	592	b2c2c1biasal	17.03	179.06	17,1?
559	$5 ?$	alazbicaclba	17.10	174.52	17.15	618	676	c3s2alclbebl	17.03	179.06	17.17
554	201	bib2cls2alca	17.10	174.52	17.15	619	11	alblate2c!bd	14.10	179.28	12.18
555	34	clc 2 albabla	17.10	174.52	17.15	620	159	blelbabaic ${ }^{\text {a }}$	11.10	179.28	17.18
558	398	ablb2alcacl	17.15	174.5?	17.10	621	263	clale2b2bla?	14.40	179.28	17.18
55%	550	beciceblatal	17.15	171.52	17.10	822	401	a 2 lb 2 c alca	17.18	179.28	14.40
558	616	c2ala 2 clozbl	17.15	174.52	17.10	923	558	blcle2atblal	17.18	199.28	11.40
559	367	atalcltbica	17.08	171.78	16.94	624	618	c3ela ${ }^{\text {b } 2 \text { clt }}$	17.18	199.28	14.40
560	469	a 2 e2claibibs	18.94	174.78	17.08	625	in	ab2biclazc?	15.32	130.01	12.35
561	506	beblalcle ${ }^{\text {a }}$ a	17.08	171.18	16.91	626	224	blazcla! ${ }^{\text {a }}$ a	i 10.82	180.01	13.85
562	553	blazalblcle?	16.94	174.78	17.08	627	290	clajalble $2 h^{2}$	16.82	180.01	17.85
663	665	c2clblali2b2	17.08	171.78	15.94	628	136	a 2 2alcicebi	13.35	180.01	16.82
564	705	cibablelata	16.94	174.18	17.08	829	581	buczbialaza	12.85	180. 181	16.82
868	18	-1bib?casicl	16.79	174.37	13.51	630	688	c?a2ciblbal	13.85	180.01	16.82
556	90	a!b?a 2 cac!bl	13.51	174.37	10.99	591	108	alc 2 a $1 b^{2} a^{2} b^{1}$	11.98	180.33	14.50
56 ?	: 66	bicie $2823^{\text {a }}$ i	16.19	174.8?	13.51	632	110		14.50	180.33	10.28
568	229	ble2b2asaicl	13.51	174.87	10.99	695	111	blabalazb?	17.38	130. 33	14.60
569	250	clalazbecabl	16.79	174.8?	-3.51	634	134	blabiclaes!	14.50	180.3i	17.38
$5 ?$	3.2	$\therefore 1 a 2 c 2 b 2 b l a l$	13.51	174.87	15.19	Q ${ }^{3} 5$	322	clb2blactal	17.18	180.32	[1.5.)
$5 ? 1$	105	alc2clashlb2	17.13	175.58	17.12	835	335	cloze2alazt!	14.5 ${ }^{1}$	180.33	17.38
572	171	blazalbelez	17.12	195.58	17.12	639	389	32blalcicits	14.7?	180.58	17.44
573		clbebiçalai	17.13	175.58	! 7.12	638	399	ajblbaclaica	17.14	180.58	11.7?
571	3 yc	ataic2bib2al	17.12	175.58	17.13	639	53 ?	b2cibi32aic?	14.i7	180.58	17.44
575	520	$b^{2} \mathrm{bla} 2 \mathrm{clc} 2 \mathrm{al}$	17.12	175.58	17.13	640	549	b2cle2albitá	17.14	180.58	14.10
596	658	c2cib2alabl	17.12	175.58	17.13	641	\$11	c2alclbabls?	14.77	180.58	17.14
$5 ?$	13	a lbib2clazc?	17.08	1.18 .31	11.93	612	613	-2alazbleth	$1: 14$	180.59	14.77
598	164	blcjc2atbiad	17.08	- 76.31	19.93	643	43	alclc3blashe	17.04	181.38	14.18
573	248	clalazbicita	17.08	176.31	0.93	644	$18 ?$	blalazelbzcz	11.04	181.98	14.18
330	438	a 262 alc 2 clol	13.93	176.31	17.08	515	278	clblbaalcta	13.64	181.38	14.12
581	58%	b2c2blasicl	13.93	176.31	17.08	846	451	a 2 2albatic!	14.18	181.88	17.04
582	690	c2a2c!b2bla	13.93	176.31	17.08	$64 ?$	564	b2azblciclal	14.18	181.88	17.04
583	18	alc!c3b2abbl	17.23	178.58	14.39	618	113		14.18	181.88	17.04
ES9	113	alc2a2tablel	14.39	176.58	17.29	619	409	a 2 clalblbica	13.83	182.62	10.13
585	132		17.23	176.58	11.39	650	471	32c2clbla!be	16.73	182.62	!3.83

Table 5.16. (Continued)

KAMR	CASE	$\begin{gathered} \text { PHASE } \\ \text { ARRAGENENT } \end{gathered}$	SAGNETIC PIELD			RANX	$\underset{i}{\text { CASE }}$	PHASE ARRAHGELENT	MAGHETIC PIELD		
			-150	MAR	150					HAX	150
651	482	b2alblciciaz	13.83	182.62	16.73	716	110	blazalcleabd	19.91	200.63	19.75
859	555	b2aralcibica	16.73	182.68	[3.83	717	319	clb2blalazc	19.94	200.63	19.75
653	631	c2blclals2b2	13.83	182.62	16.73	718	112	2b2biclc 2 al	19.75	200.63	19.94
9554	703	catablalclaz	16.75	182.82	13.85	119	590	b2c2clala bl	19.75	200.53	19.3
355	8	albis2cic2b2	11.32	182.99	18.92	120	671	C2a 2161 b 2 cl	19.75	200.62	19.9\%
595	159	blcibalazc?	14.33	182.99	16.92			- ${ }^{\text {a }}$,		-	19.0
59	280	clalcablbiz?	14.32	182.99	16.92						
368	143	a 2 abiczalcl	15.92	182.99	[4,33						
659	591	bac?clazblal	16.98	182.99	11.33						
660	69	c2a2aib2cibl	16.92	182,93	14.3?						
$6 \hat{p}$	385	s2bialcicab?	14.69	181.25	17,1?						
\cdots	141	a 2 2blclalce	17.17	184.25	14.59						
65^{3}	535	b2clblala2ce	11.69	184.25	17.17						
961	589	b2cectalblaz	1?.17	124.25	14.69						
$8{ }^{695}$	808	casicibib2az	11.59	184.25	17.17.						
666	673	crasalblelbe	12.1?	134.25	14.69						
667	103	alcaciblazbe	17.17	185.51	14.29						
958	169	blazalcibac?	17.1?	185.51	14.28						
569	320	clozblalc2á	17.17	185.5!	14.28						
590	458	a 2 c2albib2cl	14.28	185.51	17.1?						
671	562	b2a2blcic2al	11.28	185.51	17.1 ?						
672	110	c2b2clala 261	14.28	185.51	17.17						
673	19	alblb2c2cla2	19.84	132.77	19.16						
674	165	blcle2a2albz	19.64	192.7?	19.16						
675	219	clals2b2blca	19.64	192.77	19.16						
676	432	azclcab2blal	19.45	192.7?	19.64						
97?	198	baalafceclbl	19.16	182.77	19.61						
378	547	c2blbasalct	19.16	192.7?	19.64						
679	4?	alclc2b2bla?	19.84	194.79	19.94						
980	131	blala $2 c 2 c!b 2$	19.84	194.73	19.94						
681	278	clbib2atalca	19.84	194.79	19.91						
882	402	2blb2c2cla	19.94	194.79	19.84						
683	551	b2c1c2a2alb1	19.91	194.79	19.84						
81	617	c2slazb2blct	13.94	194.79	19.84						
585	14	albib2clc2a 2	19.85	195.29	19.75						
588	163	blcicaalazb?	19.85	195.29	19.75						
68%	247	c1s1a2bibaca	19.85	195.29	19.75						
688	414	a2c2clbeblal	19.75	105.29	19.85						
689	558	bra2alczelbl	19.75	195.29	19.85						
690	$70 ?$	c2beblazalcl	19.75	195.29	19.85						
691	77	albeble 2 cia	19.24	196.21	19.26						
992	225	blcenclazalos	19.24	195.21	19.26						
593	291	clazaibablc?	19.24	196.21	19.26						
591	130	a $2 \mathrm{c} 1 \mathrm{c} 2 \mathrm{blb2al}$	19.26	198.21	19.24						
695	996	baalaclezbl	19.26	196.21	19.24						
998	644	citiocalazc1	19.26	196.21	19.24						
597	! 07	alc? ${ }^{\text {a }}$ [b2tas	20.13	197.26	20.15						
598	173	blazalceldb	20.13	197.26	20.15						
599	321	clozblatalc?	20.13	197.26	20.15						
700	400	a $2 \mathrm{blb2clc} 2 \mathrm{al}$	20.15	197.26	20.13						
701	548	becicialazbl	20.15	197.26	20.13						
102	514	c2alazbib2c!	20.15	197.28	20.13						
903	44	siclcablbas	19.64	198.23	19.54						
704	128	c1ala2clczb2	19.64	198.23	19.54						
105	$27 ?$	clblbaslasca	19.64	198.23	19.54						
196	44	a 2 b 2 blc 2 clal	13.54	198.23	19.54						
17	$59 ?$	b2c2clatalbl	19.54	198.23	19.64						
108	579	c2azalbeblcl	19.54	198.23	19.64						
109	74	31b2blcle $2 a^{2}$	19.46	198.66	19.55						
010	223	blc?clalab?	19.18	198.56	19.55						
?11	289	clasalbibec?	19.16	198.65	19.58						
912	472	a 2 cac!blb2a!	19.55	198.66	19.16						
719	556	b2s2alcle2bl	19.55	198.66	19.46						
714	904	c2bablala 2 cl	19.55	199.66	19.16						
$1!5$	104	alc2clblbsas	10.81	$200.5{ }^{\circ}$	19.15						

6. CONCLUSIONS

6.1 Introduction

Exposure to magnetic fields is a topic of great importance right now. Currently, medical experts have not found out how or if magnetic fields interact with biological systems. It is believed that different magnitudes of magnetic fields may be harmful, while other magnitudes may not be. Researchers also suspect different frequencies may be harmful, while other frequencies may not be. In a typical dose-response relationship, if a little is bad, then more should be worse. Examples of this are ionizing radiation and harmful chemicals. Magnetic fields do not seem to behave in this typical dose-response relationship. This is probably where most of the research in the area of magnetic fields is needed. Both the scientific community and the medical community must cooperate in resolving this issue. The scientific community must find out the levels of fields that exist in our environment, while the medical community must find out if magnetic fields interact with biological systems, and if they do, at what levels and frequencies.

6.2 Summary of Work Completed

Work that has been completed at Iowa State University falls into the area of measuring and attempting to characterize magnetic fields that exist in our environment. This attempt began with obtaining a device to measure magnetic fields.

The original EPRI EMDEX unit was the first of its kind. It was a portable device that not only measured magnetic and electric field data at periodic intervals,
it also stored this data in an on-board microprocessor. This data could later be off-loaded and analyzed. This device was used in the original EPRI EMDEX project which gathered magnetic and electric field data to which utility employees were exposed. The EMDEXC is the second generation of the EMDEX that has been released commercially. The EMDEXC has improvements over the original EMDEX in both the hardware and the software. This unit is currently being used in the follow-up EPRI EMDEX project where background magnetic field data is being gathered in homes all across the United States. Developed at Iowa State University for use with the EMDEXC is a measuring wheel that can be used to trigger the EMDEXC to collect data versus distance. This makes it possible to more accurately obtain field profiles around utility lines and to conduct field mapping studies.

Once the EMDEX and EMDEXC devices were obtained, it was possible to gather data when requested. Measurement activities involved going to a variety of sites, making measurements, off-loading the data, and analyzing it. After the analysis, a report was written and returned to the concerned party. This type of activity served two purposes. First, it informed the concerned party of the type of exposure to which they were being exposed. Second, it helped to educate Iowa State University of the levels that exist in particular environments.

Computer programs also play an important role in the understanding of magnetic and electric field behavior. Several programs are used in calculating the theoretical fields that exist because of the presence of electrical lines. Exposure assessment calculations are performed by one software package. A program was developed that varies a parameter over a given range, to determine the affects on
fields produced. Another program developed calculates how to properly arrange the phase conductors to minimize the fields from a double three phase line.

6.3 Suggestion for Future Work

As suggested earlier, the scientific community needs to continue to develop tools to measure or predict the magnetic and electric fields that exist in our environment. Only then can meaningful magnetic and electric field limits be set if required in the future. This can be done through a variety of activities.

Whenever the opportunity exists, field data should be collected. These data can be used in building a database of fields that exist in our environment. Programs and techniques should continue to be developed to model field exposure. Only through the knowledge of current exposure levels, can future exposure levels be lowered if required.

The scientific community should continue to keep up to date on what the medical community is finding on the health effects issue. The scientific community can then keep its research working in the same direction as the medical community.

7. APPENDIX A

DNA - Deoxyribonucleic acid
DVM - Doctor of Veterinary Medicine
ELF - Extremely low frequency
EMDEX - Electric and magnetic field digital exposure
EMDEXC - Commercial version of EMDEX
EMF - Electric and magnetic fields
EPA - Environmental Protection Agency
EPRI - Electric Power Research Institute
ITEF - Iowa Test and Evaluation Facility
PC - Personal computer
TLWorkstation - Transmission Line Workstation

8. APPENDIX B

Program TlRead


```
**
c* This program is designed to reformat the EN*.005 file output from *
c* the TLWorkstation. It puts the output file in the form of *
C*
    x f(x)
Xf(x) 
c*
c* where x is a distance and f(x) is the magnitude of the resultant *
c* magnetic field at that distance. This output file can be imported *
c*}\mathrm{ into LOTUSl23 and graphed.
*
C*
```



```
c*
                                    #
c* InName is the name of the EN*.005 file output from the TlWorkstation *
c* OutName is the name of the output file from TLRead *
c* X is the distance
*
c* Mag is the magnetic field at that particular distance *
```



```
Character InName*12. OutName*12, X*12, Mag*12
```



```
Write(*,*)'What is the input file name?'
Read (*,9) InName
9 Format (al2)
Write(*,*)'What is the output file name?'
Read ( \(*, 9\) ) OutName
Open(unit=8, File = InName, status \(=\) 'old')
Open(unit=7. File \(=\) OutName, status \(=\) 'new')
c** Data is read in from InName, and written back out to OutName **\#*****
Read (8.6)
6 Format(1x)
7 Read(unit \(=8, f m t=9\), end \(=200\) ) \(x\) Read(8.9) Mag
Write(7.10) X, Mag
10 Format (1x, a12, 4x, al2) Goto 7
200 End
```


9. APPENDIX C

PROGRAM MAGFIELD

INTEGER P.nc.done, pc CHARACTER*30 D2
CHARACTER*1 Swap
CHARACTER*80 F2. P2
CHARACTER*6 FILE2. EILEI
DOUBLE PRECISION PII
INCLUDE "stivar"
23 write (*.*)'How many 3 phase ciruits will you have (1 or 2)?' read ($*, *$) nc
if ((nc.ne.1). and. (nc.ne.2)) then goto 23
end if
$p c=n c * 3$
if (pe.eq. 6) then
write ($*, *$) Can these lines be swapped from circuit to circuit
\& (y or n)?'

24

> read(*. 24) swap format(al)
endif
done $=6$
if ($\mathrm{pc} . \mathrm{eq.6} \mathrm{)} \mathrm{then}$
if (swap.eq. ${ }^{\prime} y^{\prime}$) then
do
done $=36$
endif
endif
CALL LINE (done.nc.pc)

C Subroutine for inputing general data
input general data
INDX $=0$
C OPEN (UNIT=99.FILE='ed.dat'.STATUS='OLD')
10 INDX=INDX +1
READ (99.6.err=103) F2
C 6 Enter Today's Date
READ (99.7) D2
7 FORMAT (A30)
C Enter a Description of the Problem READ (99.6) P:
CALL YiDATA
READ (99.8) FILE1
READ (99.8) FILE2
8 FORMAT (A6)

C $\quad \mathrm{FCT}=$ factor, $\mathrm{K}=$ constant. TOG $=$ toggle. $D E L T=$ difference
RHO $=0.10$
$G R T=0 . d 0$
$g W=0$
DSTRT $=0 . \mathrm{d} 0$
DSTOP $=0 . \mathrm{d} 0$
STP $=0 . \mathrm{dO}$
PLINE $=0 . \mathrm{d} 0$

subroutine for inputing phase conductor data

```
    CALL PHDATA
    C #***************************************************************************
    C Subroutine for inputing static wire data
    CALL STWRDATA
    CALL HPDATA
```



```
    convert phase currents to rectangular form
        PII = 4.d0*DATAN(1.d0)
        DO 100 P = 1.PC
            IPR(P) = CUR(P) * DCOS(ANG(P) * PII / 180.DO)
            IPM(P) = CLR(P) : DSIN(ANG(P) * PII / 180.D0)
    100 CONTINUE
```



```
    subroutine for calculating static wire currents
    CALL STCURR
C ***********************************音**************************************
            CALL HPROFILE(P2.FILE2)
            GOTO 10
        103 CALL SORT(done)
            END
    SUBROUTINE BFIELD(J)
    INTEGER G
    DOUBLE PRECISION K1,DELTX,DELTY,DELIM,HVEC,VVEC,S1,S2,BXSQR.
        & THETA.ATOP,ABOT.OMEG1.OMEG2.TCOS1.TCOS2.PCOS1,PCOS2.B2SQR.
        B1SQR,PHI, PII
            INCLUDE "shvar"
C this Kl is for dimensions in feet and output in milligauss
    K1 = 6.5616798d0
    PII = 4.d0*DATAN(1.d0)
    BXR(J) = 0.D0
    BXM(J) = 0.DO
    BYR(J) = 0.DO
    BYM(J) = 0.DO
    *************************************************************************
    calculate B-field from phase conductors
    DO 200 I = 1.PC
            clause to prevent division by zero
            IF ((XT(J) ER. PX(I)).AND. (YT(J) .EQ. PY(I))) THEN
                XT}(\textrm{J})=\textrm{XT}(\textrm{J})+.1d
            ENDIF
    calculate unit vectors
    DELTX = PX(I) - YT(J)
    DELTY = PY(I) - YT(J)
    DELIM = YT(J) + 2887.d0
    si is square of distance from phase to test point
    Si = DELTY**2 + DELTY**2
    s2 is square of distance from imave of phase to test point
    S2 = DELTX**2 + DELIM**2
    HVEC = DELTY/S1 + DELIM / S2
    MEC = DELTY/S1 + DELTX/S2
    calculate horizontal flux density component
    BXR(J) = BXR(J) + K1 }\ddagger\mathrm{ IPR(I) * HVEC
    BXM(J)= BXM(J) + K1:IPM(I) * HVEC
    calculate vertical flux density component
    BYR(J) = BYR(J) + KI * IPR(I) * VVEC
    BYM(J) = BYM(J) +K1 *IPM(I) * VVEC
    O0 CONTINLE
    IF (GW NE, 0) THEN
```



```
    calculate B-field from static wires
    DO 300 G = l .gw
        clause to prevent division by zero
```


ENDIF
calculate unit vectors
DELTX $=\mathrm{gx}(\mathrm{G})-\mathrm{XT}(\mathrm{J})$
DELTY $=G Y(G)-Y T(J)$
depth of earth return current is 880 meters or 2887 feet
DELIM $=$ YT $(J)+2887$.D0
sl is square of distance from static wire to test point
S1 $=$ DELTX**2 + DELTY $* * 2$
s_{2} is square of distance from inage of static wire to test point
S2 $=$ DELTX $* * 2+$ DELIM $* * 2$
$\mathrm{HVEC}=$ DELTY $/ \mathrm{S} 1+$ DELIM $/ \mathrm{S} 2$
$\mathrm{VVEC}=\mathrm{DELTX} / \mathrm{S} 1-\operatorname{DELTX} / \mathrm{S} 2$
calculate horizontal flux density component
$\operatorname{BXR}(J)=\operatorname{BXR}(J)+$ K1 * IGR (G) * HVEC
$\operatorname{BXM}(J)=\operatorname{BXM}(J)+K 1 * \operatorname{IGM}(G) *$ HVEC
calculate vertical flux density component
$\operatorname{BYR}(J)=\operatorname{BYR}(J)+K 1 \dot{*} \operatorname{IGR}(G) \stackrel{\operatorname{VVEC}}{\star}$
CONTINUE
ENDIF

C \quad Chseck $=\operatorname{BXR}(J) * * 2+B X M(J) * *$
IF (DABS (BXR (J)) $.1 \mathrm{t} . .00001 \mathrm{~d} 0$) THEN
THETA $=$ PII $/ \dot{2} .{ }^{\text {D }}$
ELSE
THETA $=\operatorname{DATAN}(\mathrm{BXM}(\mathrm{J}) / \mathrm{BXR}(\mathrm{J}))$
ENDIF
C convert vertical flux density to polar form
C \quad BYSQR $=\operatorname{BYR}(J) * * 2+B Y M(J) \star * 2$
C check for division by zero
IF (DABS (BYR (J)) $\cdot 1 \mathrm{t}$. . 00001d0) THEN
ELSE $=$ PII 2.DO
$\underset{\text { PHI }}{ }=\operatorname{DATAN}(\operatorname{BYM}(J) / \operatorname{BYR}(J))$
ENDIF

ATOP $=$ BXSQR * DSIN (2.DO * THETA) + BYSQR * DSIN (2.DO *PHI)
$A B O T=B X S Q R * D C O S(2 . D O * T H E T A)+B Y S Q R * D C O S(2 . D O * P H I)$
OMEG1 $=.5 D 0 *$ DATAN (-ATOP / ABOT)
OMEG2 $=$ OMEG1 +1.5707963 DO

calculate the maximum/minimum flux densities
TCOS $1=(\operatorname{DCOS}(0 M E G 1+$ THETA $)) * \hbar 2$
PCOS1 $=(\operatorname{DCOS}($ OMEG1 +PHI$)) * * 2$
$\mathrm{BLSQR}=\mathrm{BXSQR} * \mathrm{TCOS} 1+\mathrm{BYSQR} * \mathrm{PCOS} 1$
$\mathrm{BL}=(\mathrm{B} 1 \mathrm{SQR}) * * .5 \mathrm{~d} 0$
C cannut predict if 81 or 82 will be the maximum --test it
$\operatorname{TCOS} 2=(\operatorname{DCOS}(O M E C 2+\operatorname{THET} 4)) * * 2$
$\mathrm{PCOS} 2=(\mathrm{DCOS}(0 \mathrm{MEG} 2+\mathrm{PHI})) \div \div 2$
$\mathrm{B} 2 \mathrm{SOR}=\mathrm{BXSOR} * \mathrm{TCOS} 2+\mathrm{BYSOR} * \mathrm{PCOS} 2$
$B 2=(B 2 S Q R) \div * \cdot 5.10$
IF (B1, It. B2) THEN
$M X(J)=B 1$
ELSE
$M \mathrm{MX}(J)=\mathrm{B2}$
$\operatorname{MN}(J)=B 1$
ENDIF
$B X(J)=(B X S O R) * * .5 d 0$
$\mathrm{BY}(\mathrm{J})=(\mathrm{BYSQR}) * * .5 \mathrm{dO}$
END

SUBROUTINE BFMUTZ (I, P)

INTEGER P.I
DOUBLE PRECISION DELTX, DELTY,S1,S2, KEP,KSP, THETA
C calculate mutual impedance between wires
C reference EPRI red book - section 3.4
double precision kep.ksp
INCLUDE "shvar"
DELTX $=g X(I)-P X(P)$
DELTY $=G Y(I)-P Y(P)$
DELIM $=G Y(I)+P Y(P)$
C sl is distance (feet) between phase \& static
S1 $=($ DELTX $* * 2+$ DELTY $* * 2) \div \star .5 d 0$
$C \quad$ $C 2$ is distance (feet) from phase image \& static
$S 2=(D E L T X * * 2+D E L I M * * 2) * * .5 \mathrm{dO}$
$\mathrm{KEP}=\mathrm{S} 2 /(\mathrm{RHO}) \div \div .5 \mathrm{~d} 0$
$\mathrm{KSP}=\mathrm{S} 2 / \mathrm{S} 1$
THETA $=$ DATAN (DABS (DELTX / DELIM))
C mutual impedance by Carson's earth return equations
$R P G=9.530153199999999 D-02-.00037948027 \mathrm{DO} * \mathrm{KEP} \approx \mathrm{DCOS}(\mathrm{THETA})$
RPG $=$ RPG+. $0000042600004 \mathrm{DO} * \mathrm{KEP} \div 2 \div \operatorname{DCOS}(2 . \mathrm{DO} \div$ THETA)
$R P G=R P G-.00000066756096 D 0 * K E P * * 2 * D C O S(2 . D 0 * T H E T A) * D L O G(K E P)$
RPG $=$ RPG $+.00000066756096 \mathrm{DO} * \mathrm{THETA} * \mathrm{KEP**2} * \mathrm{DSIN}(2 . \mathrm{DO} *$ THETA $)$
$R P G=R P G+.0000000011134452 \mathrm{DO} * \operatorname{DCOS}(3 . \mathrm{DO} *$ THETA) $\approx \mathrm{KEP} * * 3$
RPG=RPG-9.6148048D-13 * DCOS (4.D0 * THETA) * KEP**4
C reactance formula includes Xd (ij)
XPG $=.68332844 \mathrm{DO}+.1213416800 *$ DLOG(KSP) - . 12134168 DO *DLOG (KEP)
$\mathrm{XPG}=\mathrm{XPG}+.00037948027 \mathrm{DO} * \mathrm{KEP} \div \mathrm{DCOS}(\mathrm{THETA})$
$\mathrm{XPG}=\mathrm{XPG}-.00000052430115 \mathrm{DO} * \mathrm{KEP} * 2 * \operatorname{DCOS}(2 . \mathrm{DO} * \mathrm{THETA})$
$\mathrm{XPG}=\mathrm{XPG}+.0000000011134452 \mathrm{DO} * \mathrm{DCOS}(3 . \mathrm{DO} \approx \mathrm{THETA}) \div \mathrm{KEP} \div \div 3$
$X P G=X P G-8.3222085 \mathrm{D}-12 \div \mathrm{DCOS}(4 . \mathrm{DO} * \mathrm{THETA}) * K E P \div * 4$
$\mathrm{YPG}=\mathrm{YPG}+1.224195 \mathrm{D}-12 * \mathrm{DCOS}(4 . \mathrm{DO} \div \mathrm{THETA}) * \mathrm{KEP} \div 4 \div \mathrm{DLOG}(\mathrm{KEP})$
$\mathrm{XPG}=\mathrm{XPG}-1.224195 \mathrm{D}-12$ * THETA * DSIN(4.DO*THETA) * KEP**4
END
SUBROUTINE HPDATA
INCLUDE "shvar"
C subroutine for inputing horizontal profile data
C Enter the X . COORDINATE of the START of the Profile
C $\quad \operatorname{READ}(99,400)$ DSTRT
Enter the 'X' COORDINATE of the FINISH of the Profile
READ 99.400) DSTOP
FORMAT (त8.2)
C Enter the STEP or INCREMENT SIZE in feet
$\operatorname{READ}(99.410) \operatorname{STP}$
$4!1)$
PLINE $=3.2800$
END

SUBROLTINE HPROFILE (P2,FILE2)
INTEGER M, J
CHARACTER $\div 6$ FILE2
CHARACTER -80 P 2
DOUBLE PRECISION X (100)
INCLUDE "shvar"
C subroutine for horizontal profile
C flux density format
$M=\operatorname{INT}(D A B S((D S T O P-D S T R T) / S T P))+1 . D O$
OPEN(unit=101, file=file2)

```
    If(INDX.eq.1) then
        write(*.*)'COMPUTING B-FIELDS CASES'
    endif
    WRITE(101.*) INDX
    WRITE(101.500) P2
500
    FORMAT(A80)
    DO 510 J = 1.M
        YT(J) = PLINE
        XT}(J)=\operatorname{DSTRT}+(J-1)* ST
        X(J) = XT(J)
        CALL BFIELD(J)
        WRITE (101,505) XT (J),(BX(J)**2 + BY(J)**2)**.5010
    FORMAT(F8.2.F7.2)
    CONTINUE
    CLOSE(101)
    END
    SUBROUTINE LINE (done,nc,pc)
    integer i,gw,done.nc.pc
    character*& outfile
    character*1 ans
    Double Precision af(2),pii,pf(2),span(2),gmr(2),pgmr(2),
    &presist(2)
    INCLUDE "shvarl"
```



```
        open(unit=9, file='infile'.status='old')
    pii = 4.0*atan(1.0)
    write(*.*)'What is the output file name? '
    read(9,5)outfile
    format(a8)
    open(unit=8.file=outfile.status='unknown')
    write(***)'What is your name or initials? '
    read(9,5) name
    write(*,*)'What is the date? '
    read(9.5) date
    do 240 i = 1,nc
        write(*.*)'What is the magnitude of the current in circuit |'.i
            read(9,*)mag(i**2)
            mag(i**2+1)=mag(i**2)
            mag(i**2+2)=mag(i**2)
            write(*:*)'What is the power factor in circuit #',i,'? (- indic
    &ates lag):
            read(9.*)pf(i)
            if (pf(i).1t.0.0) then
                af(i)=acos(pf(i))*180.0/pii-180.0
            else
                af(i)=acos(pf(i))*180.0/pii
            endif
24:, continut
    ang(1)=0.0+af(1)
    ang(2)=240.0+af(1)
    ang(3)=120.0+af(1)
    ang(4)=0.0+:af(2)
    ang(5)=240.0+af(2)
    ang(6)=120.0+af(2)
    write(*,*)'Output filename is ',outfile
    write(*,*)'Your name or initials are ', name
    write(***)'The date is Initials are , name
    do 241 i = 1, nc
        write(*,*)'Current in circuit 非,i,' is '.mag(i**2),' /_',a
    &f(i)
241 continue
    write(*,*)'Are these 0.K.?'
    read(*.501)ans
    if (ans .eq. 'n') then
```

```
            goto 201
    endif
    do 3 i = 1, pc
        write(*,1)i
    1 format('What is X',i1,'?')
        read(9.*)px(i)
        write(*.2)i
    format('What is Y',il,'? ')
        read(9,*)py(i)
    continue
    write(%,*)'How many shield wires will you have?'
    read(*.32)gw
    format(il)
    do 4 write(*.gWi
        read(9.*)sx(i)
        write(*,2) i
        read(9,*)sy(i)
    4 continue
    write(*,*)' x(i) y(i)'
    do 506 i = 1.po
        write(*,507)i,px(i).py(i)
    506 continue
507 format('Phase 非',il,6x, f7.2,2x,f7.2)
    format('Phase 非
        write(*,607)i,sx(i).sy(i)
6 0 6 ~ c o n t i n u e ~
607 format('Shield 非',i1,5x,f7.2,2x,f7.2)
    write(*.*)'Are these 0.K.?'
    read(*,501)ans
5 0 1
    if (ans .eq. 'n') then
    endif
701 do 702 i = 1.gw
    write(*,*)'FOr circuit with static wire #', i,':'
    write(*,*)'What is the average span of towers? '
    read(9,*)span(i)
    write(*,*)'What is the geometric mean radius of the phase wire? '
    read(9,*)pgmr(i)
    write(*,*)' what is the geometric mean radius of the shield wire? '
    read(9.*)gmr(i)
    write(***)'What is the resistance of the phase wire (ohms/mile)?'
    read(9,*)presist(i)
    write(*,*)'What is the resistance of the shield wire (ohms/mile)?'
    read(9,*)resist(i)
7 0 2 \text { continue}
    do }703\textrm{i}=1.g
        write(*,*)'For circuit with static wire *'.i,':'
        write(*.*)'The average span is (ic , span(i)
        write(*,*)'The GMR of the phase wire is '.pymr(i)
```



```
        write(*,*)T,The resistance of the phase wire is , presisti)
        wuite(*,*)'The resistance of the shiseld wite is itresist(i)
    continue
    write(*,*)'Are these O.K.?'
    read(*.501)ans
    if (ans .erp. 'n') then
        goto 701
    endiff
    if (done.eq. 720) then
        CALL CASE720
    endif
    if (done.eq. 36) then
        CALL CASE36
    endif
    if (dorie.eq.6) then
    CALL CASE6
    endif
```

```
end
SUBROUTINE CASE6
integer i.count.al.bl.cl
character*2 ph(3)
INCLUDE "shvar1"
count=0
ph(1)='al'
ph(2)='bl'
ph(3)='c1'
write(*,*)'GENERATING THE 6 INPUT CASES'
format(a8)
do }100\textrm{al}=1.
    do 200 b1 = 1.3
        if (bl.eq.al) then
            goto 200
        endif
        do 300 cl = 1,3
            if ((cl.eq.al).or.(cl.eq.b1)) then
                    goto 300
            endif
            count = count + 1
            write( (8,6) name
            write(8,6) date
            format(a8)
                write(8.7) ph(al),ph(bl),ph(cl)
                format(a2,a2,a2)
                write(8,*)*3'
                write(8.31)px(1)
                write(8,31) py(1)
                write(8,31) px(2)
                write(8,31) py(2)
            write(8.31)px(3)
            write(8,31)py(3)
            write(8,8)count
            format('tot00'.il)
            write(8,11)count
            format('lot00',il)
            write(8,*),'100
                        write(8.31)mag(a1)
            write(8.31)ang(al)
            write(8.31)mag(bl)
            write(8,31)ang(bl)
            write(3.3i)mag(c1)
            write(8,31) ang(:1)
                format(f5.1)
                write(8.32)gw
                format(il)
                do 35i = 1.gw
                    write(8,3i) sx(i)
                    write(8,31)sy(i)
                    write(8.37)span(i)
                    format (i4)
                        write(8.38)gmr(i)
                        format(f5.4)
                        write(8.39)resist(i)
                    format(f6.4)
            continue
            write(8,*)'-150.0'
            write(8.*)'150.0'
            write(8,*)'5.0'
```

```
300 continue
200 continue
100 continue
    close(31)
    end
    SUBROUTINE CASE36
    integer i,count,al.b1.c1.a2.b2.c2
    character*2 ph(6)
    INCLLDE "shvarl"
    count=0
    ph(1)='al'
    ph(2)='bl'
    ph(3)='cl'
    ph(4)='a2'
    ph(5)='b2'
    ph(6)='c2'
    write(*,*)'GENERATING THE 36 INPUT CASES'
    format(a8)
    do 100 al = 1.3
        do 200 bl = 1.3
            if (bl.eq.al) then
            endif
            do 300 c1 = 1.3
                if (.(cl.eq.a1).or.(cl.eq.b1)) then
                goto 300
                endif
                do 400 a2 = 4.6
                do 500 b2 = 4,6
                                    if (b2.eq.a2) then
                                    goto 500
                                    endif
                                    do 600 c2 = 4.6
                                    if ((c2.eq.a2).or.(c2.eq.b2)) then
                                    goto 600
                            endif
                            count = count + 1
                            write(8,6)name
                            write(8,6) date
6
                            write(8,7)ph(a1),ph(b1),ph(c1),ph(a2),ph(b2),
    &ph(c2)
                        format(a2.a2.a2,a2,a2,a2)
                    write(8.#)'6'
                    write(8,31)px(1)
                    write(8,31)py(1)
                    write(8,31)px(2)
                    write(8,31)py(2)
                    write(8,31)px(3)
                    write(8.31) py(3)
                    write(8,31)py(4)
                    write(8,31) py(4)
                    write(8.31)px(5)
                    write(8,31)py(5)
                    write(8,31)px(6)
                    write(8,31)py(6)
                            if (count.le.9) then
                        write(8,8)count
                        format('tot00'.il)
                        goto 20
                    endif
```

 close(31)
 end
 SUBROCTINE CASE720
 integer i.count.al.bl.cl.a2.b2.c2
 character*2 ph(6)
 INCLUDE "stwarl"
 count=0
 ph(1)='a1.
 ph(2)='bl'
 ph(3)=, c1.
 ph(4)='a2.
 ph(5)='b2.
 ph(6)='c2'
 write(*,*)'GENERATING THE 720 INPUT CASES'
 format(a8)
do }100\textrm{al}=1,

```
```

```
            do 200 bl = 1.6
```

```
            do 200 bl = 1.6
            if (bl.eq.al) then
            if (bl.eq.al) then
                goto 200
                goto 200
            endif
            endif
            do 300 cl = 1.6
            do 300 cl = 1.6
                if ((cl.eq.al).or.(cl.eq.bl)) then
                if ((cl.eq.al).or.(cl.eq.bl)) then
                    goto 300
                    goto 300
            endif
            endif
            do 400 a2 = 1.6
            do 400 a2 = 1.6
                    if ((a2.eq.al).or.(a2.eq.b1).or.(a2.eq.cl)) then
                    if ((a2.eq.al).or.(a2.eq.b1).or.(a2.eq.cl)) then
                goto 400
                goto 400
                    endif
                    endif
            do 500 b2 = 1.6
            do 500 b2 = 1.6
                if ((b2.eq.al).or.(b2.eq.b1).or.(b2.eq.cl).or.
                if ((b2.eq.al).or.(b2.eq.b1).or.(b2.eq.cl).or.
    &(b2.eq.a2)) then
    &(b2.eq.a2)) then
                    goto 500
                    goto 500
                    goto 500
                    goto 500
                    do 600 c2 = 1.6
                    do 600 c2 = 1.6
    &(c2.eq.a2).or.(c2.eq.b2)).eq.al).or.(c2.eq.b1).or.(c2.eq.c1).or then (c, (c)
    &(c2.eq.a2).or.(c2.eq.b2)).eq.al).or.(c2.eq.b1).or.(c2.eq.c1).or then (c, (c)
                goto 600
                goto 600
                            endif
                            endif
                            count = count + + 
                            count = count + + 
                            count = count + + $
                            count = count + + $
6
6
    &ph(c2)
    &ph(c2)
7
7
```

 write((8,6) date
    ```
                            write( (8,6) date
                                format(a8)
                                format(a8)
                            write(8,7)ph(al),ph(b1),ph(c1),ph(a2),ph(b2),
                            write(8,7)ph(al),ph(b1),ph(c1),ph(a2),ph(b2),
                            format(a2,a2,a2,a2,a2,a2)
                            format(a2,a2,a2,a2,a2,a2)
                            write(8.*)'6'
                            write(8.*)'6'
                    write(8,31)px(1)
                    write(8,31)px(1)
                    write(8,31)py(1)
                    write(8,31)py(1)
                    write(8,31) px(2)
                    write(8,31) px(2)
                    write(8,31)py(2)
                    write(8,31)py(2)
                    write(8,31) px(3)
                    write(8,31) px(3)
    write(8.31) py(3)
    write(8.31) py(3)
    write(8,31) px(4)
    write(8,31) px(4)
    write (8,31) py(4)
    write (8,31) py(4)
    write(8,31) px(5)
    write(8,31) px(5)
    write(8,31)py(5)
    write(8,31)py(5)
    write(8,31) px(6)
    write(8,31) px(6)
    write(8,31)py(6)
    write(8,31)py(6)
    if (count.le.9) then
    if (count.le.9) then
        write(8,8) count
        write(8,8) count
        format('tot00',i1)
        format('tot00',i1)
        goto }2
        goto }2
    endif
    endif
    if (count.le,99) then
    if (count.le,99) then
                write(8.9)count
                write(8.9)count
                format('tot0',i2)
                format('tot0',i2)
                goto 20
                goto 20
    endif
    endif
    write(B,10)count
    write(B,10)count
    format('tot'.i3)
    format('tot'.i3)
    if (count.le.9) then
    if (count.le.9) then
        write(8,11)count
        write(8,11)count
                format('lot00'.i1)
                format('lot00'.i1)
                goto 30
                goto 30
    endif
    endif
    if (count.le.99) then
    if (count.le.99) then
        write(8,12)count
        write(8,12)count
        format('lot0'.i2)
        format('lot0'.i2)
                        goto 30
                        goto 30
    endif
    endif
    write(8,13)count
    write(8,13)count
    format('lot',i3)
    format('lot',i3)
    write(8,*)'100.
```

 write(8,*)'100.
    ```
```

 write(8,*)'.5'
 write(8,31)mag(a1)
 write(8,31)ang(al)
 write(8.31)mag(bl)
 write(8,31) ang(b1)
 write(8,31)mag(cl)
 write(8,31)ang(cl)
 write(8,31)mag(a2)
 write(8.31)ang(a2)
 write (8,31)mag(b2)
 write(8,31) ang(b2)
 write (8,31)mag(c2)
 write(8,31)ang(c2)
 format(f5.1)
 write (8,32)gw
 format(il)
 do 35 i = 1,gw
 write(8,31)sx(i)
 write(8,31)sy(i)
 write(8,37) span(i)
 format(i4)
 write(8.38)gmr(i)
 format(f5.4)
 write(8,39)resist(i)
 format(f6.4)
 continue
 write(8,*)'-150.0'
 write(8,*)'150.0'
 write(8,*)'5.0'
 continue
 continue
 continue
 continue
 continue
 continue
 close(31)
 end
 SUBROUTINE PHDATA
 INTEGER I
 INCLUDE "shvar"
 C subroutine for inputing phase conductor data
C Enter the EARTH RESISTIVITY (RHO) in Ohm-Meters
READ(99.600) RHO
600 FORMAT(d5.0)
Eater the Averque 'Apparent' RESISTANCE of the TOWER Ground in Ohms
READ(99.610) IIRT
FORMAT(d7.5)

```

```

 DO 620 I = 1.PC
 IC = I + 7
 IF (I .GT. 15) THEN
 Ir = I - 8
 ENDIF
 Enter the ClRRENT in amps
 READ (99,615) CUR(I)
 FORMAT(d7.2)
 Enter the PHASE ANGLE in degrees
 READ (99,618) ANG(I)
 FORMAT(d8.2)
 620 CONTINUE
 END
    ```
```

 SUBROUTINE SORT(done)
 integer i,index(720), switch.itemp,done
 Double Precision min(720).max(720). temp,chk.num(720).x
 character*12 title(720),atemp
 character*10 infile
 character*3 char3
 character*2 char2
 character*l charl
 open(unit=8.file='sum.dat'.status='unknown')
 h: (et*,*) RESIEnINS'
 10:00, = 1.done
 &f (j.1= 9) thet
 wittercharl.'(il)}\mathrm{) i
 infile = lotoc'//charl
 open(unit=\overline{\prime}.fil\div=:nf:le,status='old')
 0oto 110
 endif
 if (i.le.99) then
 write(char2.'(i2)')i
 infile = 1 lot0%/|,ha:2
 open(unit=7.file=infile.siatus='old')
 yoto 11!
 endif
 write(char3.'(i3)')i
 infile = lot.//char3
 %Men(unit=7, file=infile,status='old')
 read(7.*)index(i)
 read(7.*)title(i)
 Ch=0.0
 lean(7.115)x.min(i)
 le=d(7, 115, err=100) x.chk
 format(f8.2,f7.2)
 if (chi.gt.max(i)) then
 max(if=chk
 got(1 }7
 endif
 read(7,115)x.mume(i)
 if (x.it.i50.0)then
 00t0 116
 endif
 100
*ultimue

```

```

 if (switch.eq.1) ther
 swicch=e, j=2,done
 if may!j).lt mav(j-1': then
 temp:max:(j)
    ```

```

 max(f-3)=-0m%
 *-4,i=n:*i!
    ```

```

 minti-1)=:-mp.
 Atemp = titimíj
    ```

```

 title(j-l)=atemf
 Itemp=indesti)
 index(j)=index (j-1)
 index (j-1)=i temp
 temp=num(j)
 num(j)=num(j-1)
 num(j-1)=temp
 switch=1
 endif
 continue
    ```
goto 120
endif
do \(150 \mathrm{i}=1\), done
write(8,131)i, index(i), title(i),min(i), max (i), num(i)
131
format(i3.1x,i3.1x.al2,1x.f6.2,1x.f6.2.1x.f6.2)
150
continue
end

SUBROUTINE STCURR
INTEGER P
double precision kes,kss,rgg, xgg, rgs.xgs,rg,xg.fctl,fet2
double precision fct3, fct4.PII
INCLEDE "shvar"
C subroutine for calculating static wire currents
\(C\) routine for developing the 'A' impedance matrix
calculate mutual impedance between phase and static wires
reference EPRI red book - section 3.4
PII \(=4 . \mathrm{d} 0 * \operatorname{DATAN}(1 . \mathrm{d} 0)\)
DO \(700 \mathrm{I}=1, \mathrm{gw}\)
\(\operatorname{VGR}(I)=0 . D 0\)
\(V G M(I)=0 . D 0\)
DO \(710 \mathrm{P}=1, \mathrm{PC}\)
RPG \(=0\). DO
\(\mathrm{XPG}=0 . \mathrm{DO}\)
CALL BFMUTZ (I, P)
\(C\) build static wire voltage matrix ' \(C\) '
Summation of voltages from all phases (volts per mile)
\(\operatorname{VGR}(I)=\operatorname{VGR}(I)+\operatorname{IPR}(P) * \operatorname{RPG}-\operatorname{IPM}(P) * X P G\)
\(\operatorname{VGM}(I)=\operatorname{VGM}(I)+I P R(P) * X P G+I P M(P) * R P G\)
CONTINUE
real \& imaginary are kept separate in \({ }^{\prime} C\) ' matrix
\(J=(2 * I)-1\)
\(K=2 * 1\)
\(\mathrm{CM}(\mathrm{J})=\mathrm{VGR}(\mathrm{I}) * \operatorname{SPAN}(\mathrm{I}) / 5280 . D 0\)
\(C M(K)=\operatorname{VGM}(I) * \operatorname{SPAN}(I) / 5280 . D 0\)
\(\operatorname{VG}(\mathrm{I})=1.7320508 \mathrm{DO} *(\mathrm{CM}(\mathrm{J}) * * 2+\mathrm{CM}(\mathrm{K}) * * 2) * * .5 \mathrm{~d} 0\)
\(\operatorname{VGANG}(I)=\operatorname{DATAN}(C M(K) /\) CM(J)) * \(180 . D 0 /\) PII
IF (CM(J) LT. 0.dO) THEN
\(\operatorname{VGANG}(\mathrm{I})=\operatorname{VGANG}(\mathrm{I})+180 . \mathrm{D} 0\)
ENDIF
700
CONTINUE

compute mutual impedance between static wires
IF (GW, NE, 1) THEN
DO \(730 \mathrm{I}=\mathrm{I} . \mathrm{gw}\)
DO \(740 \mathrm{G}=(\mathrm{I}+1) . \mathrm{gW}\)
\(\mathrm{RGG}=0 . \mathrm{DO}\)
\(\mathrm{XGG}=0 . \mathrm{DO}\)
CALL BFML'TZ(I. G)
C
build static wire impedame matrix 'A'
\(\mathrm{Q}=2 * \mathrm{I}\)
\(R=(2 * I)-1\)
\(\mathrm{J}=(2 * \mathrm{G})-1\)
\(\mathrm{K}=2 * \mathrm{G}\)
C mutual \(R+j X\) are the off-diagonal elements of matrix
\(A(J, R)=-R G G * \operatorname{SPAN}(I) / 5280 . D 0\)
\(A(J, Q)=\) YGG * SPAN(I) \(/ 5280 . D 0\)
\(A(K, R)=-X G G \div \operatorname{SPAN}(I) / 5280 . D 0\)
\(\mathrm{A}(\mathrm{K}, \mathrm{Q})=-\mathrm{RGG} * \operatorname{SPAN}(\mathrm{I}) \quad 5280 . \mathrm{D} 0\)
\(A(R . J)=-R G G * S P A N(I) / 5280 . D O\)
\(A(Q . J)=-X G G * S P A N(I) \quad 5280 . D 0\)
\(A(R, K)=X G G * \operatorname{SPAN}(I) / 5280 . D 0\)
\(\mathrm{A}(\mathrm{Q}, \mathrm{K})=-\mathrm{RGG} * \operatorname{SPAN}(\mathrm{I}) / 5280 . \mathrm{DO}\) CONTINUE
CONTINUE
```

 ENDIF
    ```

```

 calculate the self impedance of static wires
 DO }750\textrm{I}=1.g
 RGS = 0.DO
 XGS = 0.DO
 KES =GY(I) / (RHO)**.5d0
 KSS = GY(I) GMR(I)
 Carson's earth equations for self impedance (combined)
 RGS = 9.5301532999999990-02 - .0007589605400 * KES
 RGS= RGS + .00001518913D0 * KES:*:2
 RGS=RGS - .0000026702438D0 * KES**2 * DLOG(KES)
 RGS=RGS+.0000000089075616DO*KES**3 - 1.5383687D-11*KES**4
 reactance formula includes Xa
 XGS=.68332844D0 + .1213416800 * DLOG(KSS)
 .YGS=XGS - . 12134168D0 * DLOG(KES)
 XGS=XGS + .00075896053DO * KES
 XGS=XGS - .0000020972045D0 * KES**2
 XGS=XGS + .0000000089075616D0 * KES**3
 XGS=XGS - 1. 1957858D-10 * KES **4
 XGS=XGS + 1.9587119D-11 * DLOG(KES) * KES**4
 write(*,*)'RGS XGS',rgs,xgs
 add conductor resistance and resistance of two towers
 RG = (SPAN (I) / 5280.D0) * (GRI(I) + RGS) + (2.DO * GRT)
 XG = (SPAN(I) / 5280.DO) * XGS
 add to static wire impedance matrix 'A'
 J = (2*I) - 1
 K=2*I
 self R + jX are the on-diagonal elements of matrix
 A(J,J) = -RG
 A(K,K) = -RG
 A(K,J) = -XG
 A(J,K) = XG
 750
 CONTINLE
    ```

```

 'A' MATRIX (3 STATIC WIRES) (C' MAT
    ```

```

 *-RG1-GI +XG1-G1 * -RG1-G2 +XG1-G2 *-RG1-G3 +XG1-G3 * VGR1
 * -XGl-G1 * -RGl-G1 * * -XG1-G2 * -RG1-G2 * - XGl-G3 * * RG1-G3 * * VGM1
 *-RG2-G1 +XG2-G1 * -RG2-G2 +XG2-G2 * -RG2-G3 +XG2-G3 * +RO VGR2
 * -RG3-G1* +XG3-G1 * -RG3-G2** +XG3-G2 * -RG3-G3** +XG3-G3* VGR3
 *-XG3-G1 -RG3-G1 * -XG3-G2 -RG3-G2 * -XG3-G3 -RG3-G3 * VGM3
    ```

```

 subroutine for inverting the impedance matrix ' }A\mathrm{ '
    ```

```

 create identity matrix ' B'
 V = 2 * gw
 DO 7i,0 I = 1.N
 DO 770 4 = 1.N
 B(Y,I) = 0.D0
 CONTINL'E
 CONTINUE
 diagonal elements = l, off-diagonal elements = 0
 DO 780 I = 1.v
 B(I,I) = 1.10
 70 CONTINUE
    ```

```

 invert matrix 'A'
 work lower left half of matrix, top to bottom
 start by dividing row l by (1, 1)
 A* and B# receive identical operations
 multiply row l by (2,1) and subtract from row 2
 multiply row 1 by (3,1) and subtract from row 3, etc...
 C will move sequence to 2nd column starting with (2,2)
 DO 790 C = 1, (N - 1)
    ```
```

 FCT1 = A(C,C)
 DO }795\textrm{I}=1,
 A(C,I)=A(C,I) / FCT1
 B(C,I)=B(C,I)/FCT1
 CONTINUE
 00 800 R = (C + 1).N
 FCT2 = A(R,C)
 DO 810 I = 1.N
 A(R,I)=A(R,I)-A(C,I)*FCT2
 CONTINLE
 810 CONTI
 790 CONTINUE
 work upper right half of matrix. start in bottom right corner
 C=N
 FCT3 = A(C,C)
 DO 820 I = N,I,-I
 A(C,I) =A(C,I) / FCT3
 B(C,I)=B(C,I)/FCT3
 820 CONTINUE
 DO 830 C = N,2, -1
 DO 840 R = (C - 1),1,-1
 FCT4}=\textrm{A}(\textrm{R},\textrm{C}
 DO 850 I = N,1,-1
 A(R,I)=A(R,I)-A(C,I) & FCT4
 CONTINUE
 850
 CONIINUE
 CONTINUE
 830 CONTINUE
 'B' array is now the inverse of the 'A' array

```

```

 compute the static wire currents
 MLLTIPLY THE 'C' MATRIX BY THE 'B' MATRIX
 N = 2 * gw
 DO 860 I = 1,gW
 IGR(I)}=0.0
 IGM(I) = 0.DO
 DO 870 J = 1:N
 KGR(I) * I IGR(I) 1 + CM(J) * B(K, J)
 KR=2 * I
 IGM(I) = IGM(I) + CM(J) * B(K, J)
 CONTINUE
 GCUR(I) = (IGR(I)**2 + IGM(I) ##2) %*.5d0
 GANG(I) = (DATAN(IGM(I) / IGR(I))) * 180.D0 / PII
 IF (0 .GT. IGR(I)) THEN
 GANG(I) = GANG(I) + 180.D0
 ENDIF
 860 CONTINUE
 END
 SLBROLTINE STWRDATA
 INTEGER I
 INCLLDE "shvar"
 C subroutine for inputing static wire data
C How many STATIC HIRES will you have
READ(99.900) gw
900 F
IF (GW .NE. 0) THEN
DO 910 I = 1,gW
IC = I + 7
C Enter the 'X' COORDINATE in feet
905 READ(99,905) gx(I)
C
FORMAT(d7.2) 'Y, COORDINATE in feet

```
```

C
Enter the SPAN Between Grounded Towers in feet
READ(99.906) SPAN(I)
906
FORMAT(d6.0)
906
C
Enter the GEOMETRIC MEAN RADIUS (GMR) in feet
READ(99.907) GMR(I)
907
C
Enter the WIRE RESISTANCE at 75 `F in Ohms per mile
Enter the WIRE RESIST
READ(99,
ENDIF
END
SUBROLTINE XYDATA
INTEGER I
INCLUDE "shvar"
C "How many PHASE CONDUCTORS will you have ?";
READ (99,1000) PC
1000 FORMAT(I2)
DO 1010 I = 1. PC
IC = I + 7
IF (I .GT, 15) THEN
IC = I - 8
ENDIF
READ(99,1005) PX(I)
READ(99,1005) PY(I)
FORMAT(d7.2)
1005
CONTINUE
END

```

\section*{10. LITERATURE CITED}
1. Morgan, Granger M. "Electric and Magnetic Fields from 60 Hertz Power: What do we know about possible health risks?" Department of Engineering and Public Policy, Carnegie Mellon University, 1989.
2. Wertheimer, Nancy, and E. Leeper. "Electrical Wiring Configuration and Childhood Cancer." American Journal of Epidemiology 109, no. 3 (1979): 273-284.
3. Brodeur, Paul. "Annals of Radiation, Calamity on Meadow Street." The New Yorker (July 9, 1990): 38-72.
4. Brodeur, Paul. "Annals of Radiation - I. Power Lines." The New Yorker (June 12, 1989): 51-88.
5. Brodeur, Paul. "Annals of Radiation - II. Radar." The New Yorker (June 19, 1989): 47-73.
6. Brodeur, Paul. "Annals of Radiation - III. Video Display Terminals." The New Yorker (June 26, 1989): 39-68.
7. "Radiation Alert." Family Circle 102, no. 15 (Nov. 7, 1989): 85-90.
8. An Electromagnetic Storm. Newsweek 114, no. 2 (July 10, 1989): 77.
9. "Current Health Wisdom Says Unplug It." The Des Moines Register, Thursday, June 29, 1989, p. T1.
10. Good Morning America. ABC Television Program, August 11, 1989.
11. Nightline. ABC Television Program, March 9, 1990.
12. Brodeur, Paul. Currents of Death: Power Lines, Computer Terminals, and the Attempt to Cover Up Their Threat to Your Health. New York: Simon and Schuster, 1989.
13. Banks, Robert S. "The EMF Effects Issue: An Overview of Developments, 1988-1989." Robert S. Banks Associates, Inc., Minneapolis, MN, Sept. 27, 1989.
14. Banks, Robert S. "The EMF Health Effects Issue: Recent Non-Scientific Developments." Robert S. Banks Associates, Inc., Minneapolis, MN, Apr. 1989.
15. Northeast Utilities. "Electric and Magnetic Fields - Resource Book." Northeast Utilities, Waterbury, CT, March 15, 1990.
16. Morgan, Granger M., and I. Nair. "Electromagnetic Fields" The Jury's Still Out." IEEE Spectrum 27, no 8 (1990): 27-35.
17. Edison Electric Institute. "Electric and Magnetic Fields - Answers to your Questions." Edison Electric Institute, Washington, D.C., July 1987.
18. "Is There an EMF-Cancer Connection." Science 249 (1990): 1096-1098.
19. Banks, Robert S. "Transmission/Distribution Health and Safety Report - A monthly review of research and regulatory developments." Interdisciplinary Environmental Associates, Inc., Minneapolis, MN.
20. Brodeur, Paul. "The Magnetic Fields Menace." MacWorld 7, no. 7 (1990): 136-145.
21. Information Ventures, Inc. "Extremely Low Frequency Electric and Magnetic Fields and Cancer: A Literature Review." EN-6674, Electric Power Research Institute, Palo Alto, CA, Dec. 1989.
22. Florida Electric and Magnetic Field Advisory Commission. "Biological Effects of \(60-\mathrm{Hz}\) Power Transmission Lines." Florida Electric and Magnetic Fields Science Advisory Commission, Tampa, FL, Mar. 1985.
23. Electric Power Research Institute. Power-Frequency Electric and Magnetic Field Laboratory Research. EPRI, Delevan, WI, 1989.
24. Morgan, Granger M., and I. Nair. "Biological Effects of Power Frequency Electric and Magnetic Fields - Background Paper." Washington, D.C.: Congress of the United States Office of Technology Assessment, May 1989.
25. Bonneville Power Administration. Electrical and Biological Effects of Transmission Lines - A Review. Portland, OR: Bonneville Power Administration, 1989.
26. Electric Power Research Institute. "Electric and Magnetic Field Fundamentals - An EMF Health Effects Resource Paper." EN.3012.9.89. Electric Power Research Institute, Palo Alto, CA, Sept. 1989.
27. Midwest Research Institute. "Immunological and Biochemical Effects of \(60-\mathrm{Hz}\) Electric and Magnetic Fields in Humans." U.S. Department of Energy, Washington, D.C., Jan. 1990.
28. Wertheimer, Nancy, and E. Leeper. "Adult Cancer Related to Electrical Wires Near the Home." International Journal of Epidemiology 11, no. 4 (1982): 345-355.
29. Savitz, David A., E. M. John, and R. C. Kleckner. "Magnetic Field Exposure from Electric Appliances and Childhood Cancer." American Journal of Epidemiology 131, no. 5 (1990): 763-773.
30. Verreault, Rene, N. S. Weiss, K. A. Hollenbach, C. H. Strader, and J. R. Daling. "Use of Electric Blankets and Risk of Testicular Cancer." American Journal of Epidemiology 131, no. 5 (1990): 759-762.
31. Preston, Eugene G. "A Model for Calculating Magnetic Fields in Underground Residential Distribution Feeders." EPRI Utility Seminar on New EMF Epidemiologic Results and Implications, Austin, TX, October 1990.
32. Johnson, Gary B. "Residential Magnetic Field Sources." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
33. Vihn, T., T. L. Jones, and C. H. Shih. "Magnetic Fields Near Overhead Distribution Lines - Measurements and Estimating Technique." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
34. IEEE Magnetic Fields Task Force. "Magnetic Fields From Electric Power Lines, Theory and Comparison to Measurement." IEEE Transactions on Power Delivery 3, no. 4 (1990): 2127-2136.
35. General Electric Company. "Pilot Study of Residential Power Frequency Magnetic Fields." EL-6509. Electric Power Research Institute, Palo Alto, CA, Sept. 1987.
36. Empire State Electrical Energy Research Corporation. "Magnetic Fields Associated with 345 kV Transmission Circuits in New York State." New York Power Authority, New York, June 1989.
37. McDermott, Thomas J. "Design Parameter and Constraints in Addressing Electric and Magnetic Fields of Transmission Lines." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
38. Burke, James J. "Constraints on Mitigating Magnetic Fields on Distribution Systems." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
39. Ware, B. J., and T. L. Jones. "The Effect of Design Parameters and Constraints on the Electric and Magnetic Field Environment of Transmission Lines, Distribution Lines, and Residential Power Systems." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
40. Silva, Mike, N. Hummon, D. Rutter, and C. Hooper. "Power Frequency Magnetic Fields in the Home." IEEE Transactions on Power Delivery 4, no. 1 (1989): 465-477.
41. Gauger, J. R. "Household Appliance Magnetic Field Survey." IEEE Transactions on Power Apparatus and Systems 104, no. 9 (1985): 2436-2444.
42. IEEE Magnetic Fields Task Force. "Measurements of Power Frequency Magnetic Fields Away From Power Lines." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
43. Stuchly, M. A., D. W. Lecuyer, and R. D. Mann. "Extremely Low Frequency Electromagnetic Emissions from Video Display Terminals and Other Devices." Health Physics 45, no. 3 (1983): 713-722.
44. Enk, Joseph O., and M. M. Abromavage. "Exposure to Low-Level Extremely Low Frequency Electromagnetic Fields Near Navel Communications." IEEE Journal of Oceanic Engineering OE-9, no. 3 (1984): 136-142.
45. White, Donald R. J., and M. Mardiguian. Electromagnetic Shielding, A Handbook Series on Electromagnetic Interference and Compatibility. Gainesville, VA: Interference Control Technologies, 1988.
46. Duff, William G. Fundamentals of Electromagnetic Capability, A Handbook Series on Electromagnetic Interference and Compatibility. Gainesville, VA: Interference Control Technologies, 1988.
47. Creswell, L. A., and C. K. Gowers. "Shielding Against Extra--Low-Frequency (ELF) Magnetic Fields." Electric Energy Conference, Sydney, Oct. 1989.
48. Enertech Consultants. "EMDEX System Documentation: Reference Manual." EPRI EN-6518, Vol. 1. Enertech Consultants, Palo Alto, CA, Sept. 1989.
49. Enertech Consultants. "EMDEX System Documentation: User's Manual." EN-6518, Vol. 2. Electric Power Research Institute, Palo Alto, CA, Oct. 1989.
50. Electric Field Measurements. "EFM EMDEXC User's Guide - Hardware and Software." Version 1.20. Electric Field Measurements, W. Stockbridge, MA, Mar. 21, 1990.
51. Stuchly, Maria A., and S. S. Stuchly. "Measurements of Electromagnetic Fields in Biomedical Applications." CRC Critical Reviews in Biomedical Engineering 14, Issue 3 (1987): 241-288.
52. IEEE Magnetic Fields Task Force. "An Evaluation of Instrumentation Used to Measure AC Power System Magnetic Fields." IEEE/PES 1990 Summer Power Meeting, Minneapolis, MN, July 1990.
53. Power Computing Company. "TLWorkstation User's Guide for TLWorkstation". Version 2.0. Electric Power Research Institute, Palo Alto, CA, Sept. 1989.
54. Enertech Consultants. "An Exposure Assessment Tool for Transmission Line Electric and Magnetic Fields - User's Manual and Documentation." EA-5765-CCML, Version 2.1. Electric Power Research Institute, Palo Alto, CA, Apr. 1989.

\section*{10. ACKNOWLEDGMENTS}

The author would like to thank Dr. John Wm. Lamont and Glenn Hillesland for their advice and leadership throughout his research activities. The contributions of Dr. Robert J. Weber and Dr. Terry J. Wipf, additional members of his graduate committee, are also appreciated.

The author would also like to thank the rest of the Iowa State University power area faculty and staff for its contributions in his education and research efforts. The Iowa Test and Evaluation Facility (ITEF) must also be thanked for their financial support of the many research activities and the author's education. Without the funding, this work would not have been possible.

Finally, the author would like to thank his family, friends, and especially his wife, Joann, for their patience and support throughout his master's work.```

